Affiliation:
1. Chernihiv National Pedagogical University named after T. Shevchenko, Chernigiv, Ukraine
Abstract
Abstract
We introduce a refined Sobolev scale on a vector bundle over a closed infinitely smooth manifold. This scale consists of inner product Hörmander spaces parametrized with a real number and a function varying slowly at infinity in the sense of Karamata. We prove that these spaces are obtained by the interpolation with a function parameter between inner product Sobolev spaces. An arbitrary classical elliptic pseudodifferential operator acting between vector bundles of the same rank is investigated on this scale. We prove that this operator is bounded and Fredholm on pairs of appropriate Hörmander spaces. We also prove that the solutions to the corresponding elliptic equation satisfy a certain a priori estimate on these spaces. The local regularity of these solutions is investigated on the refined Sobolev scale. We find new sufficient conditions for the solutions to have continuous derivatives of a given order.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Extended Sobolev scale on $$\mathbb {Z}^n$$;Journal of Pseudo-Differential Operators and Applications;2024-04-01