Virtual high-throughput screening: Potential inhibitors targeting aminopeptidase N (CD13) and PIKfyve for SARS-CoV-2

Author:

Ruan Zijing1,Tang Jiaxi1,Zeng Mingtang1,Fan Ping1

Affiliation:

1. Department of Clinical Pharmacy, West China Hospital, Sichuan University , Chengdu , Sichuan, 610041 , China

Abstract

Abstract Since the outbreak of the novel coronavirus nearly 3 years ago, the world’s public health has been under constant threat. At the same time, people’s travel and social interaction have also been greatly affected. The study focused on the potential host targets of SARS-CoV-2, CD13, and PIKfyve, which may be involved in viral infection and the viral/cell membrane fusion stage of SARS-CoV-2 in humans. In this study, electronic virtual high-throughput screening for CD13 and PIKfyve was conducted using Food and Drug Administration-approved compounds in ZINC database. The results showed that dihydroergotamine, Saquinavir, Olysio, Raltegravir, and Ecteinascidin had inhibitory effects on CD13. Dihydroergotamine, Sitagliptin, Olysio, Grazoprevir, and Saquinavir could inhibit PIKfyve. After 50 ns of molecular dynamics simulation, seven compounds showed stability at the active site of the target protein. Hydrogen bonds and van der Waals forces were formed with target proteins. At the same time, the seven compounds showed good binding free energy after binding to the target proteins, providing potential drug candidates for the treatment and prevention of SARS-CoV-2 and SARS-CoV-2 variants.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3