Evaluation of brain nerve function in ICU patients with Delirium by deep learning algorithm-based resting state MRI

Author:

Huang Xiaocheng1,Jiang Ruilai1,Peng Shushan2,Wei Yanbin1,Hu Xiaogang1,Chen Jian2,Lian Weibin2

Affiliation:

1. Department of Respiratory and Critical Care Medicine, Lishui Second People’s Hospital , Lishui , 323000, Zhejiang , China

2. Department of Psychiatry, Lishui Second People’s Hospital , Lishui , 323000, Zhejiang , China

Abstract

Abstract The purpose of this study was to explore the value of resting-state magnetic resonance imaging (MRI) based on the brain extraction tool (BET) algorithm in evaluating the cranial nerve function of patients with delirium in intensive care unit (ICU). A total of 100 patients with delirium in hospital were studied, and 20 healthy volunteers were used as control. All the subjects were examined by MRI, and the images were analyzed by the BET algorithm, and the convolution neural network (CNN) algorithm was introduced for comparison. The application effects of the two algorithms were analyzed, and the differences of brain nerve function between delirium patients and normal people were explored. The results showed that the root mean square error, high frequency error norm, and structural similarity of the BET algorithm were 70.4%, 71.5%, and 0.92, respectively, which were significantly higher than those of the CNN algorithm (P < 0.05). Compared with normal people, the ReHo values of pontine, hippocampus (right), cerebellum (left), midbrain, and basal ganglia in delirium patients were significantly higher. ReHo values of frontal gyrus, middle frontal gyrus, left inferior frontal gyrus, parietal lobe, and temporal lobe and anisotropy scores (FA) of cerebellums (left), frontal lobe, temporal lobe (left), corpus callosum, and hippocampus (left) decreased significantly. The average diffusivity (MD) of medial frontal lobe, superior temporal gyrus (right), the first half of cingulate gyrus, bilateral insula, and caudate nucleus (left) increased significantly (P < 0.05). MRI based on the deep learning algorithm can effectively improve the image quality, which is valuable in evaluating the brain nerve function of delirium patients. Abnormal brain structure damage and abnormal function can be used to help diagnose delirium.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3