VSP-2 attenuates secretion of inflammatory cytokines induced by LPS in BV2 cells by mediating the PPARγ/NF-κB signaling pathway

Author:

Cui Jingxin1,Xu Liwei2,Sun Yimeng1,Dai Lingfei1,Mo Yuxiu1,Yun Keli1,Chen Yifei1,Chen Linglin1

Affiliation:

1. School of Pharmacy, Guilin Medical University , No. 1 Zhiyuan Road , Guilin , Guangxi, 541199 , China

2. Scientific Experiment Center, Guilin Medical University , No. 1 Zhiyuan Road , Guilin , 541199, Guangxi , China

Abstract

Abstract Neuroinflammation, characterized by microglial activation and the subsequent secretion of inflammatory cytokines, plays a pivotal role in neurodegenerative diseases and brain injuries, often leading to neuronal damage and death. Alleviating neuroinflammation has thus emerged as a promising strategy to protect neurons and ameliorate neurodegenerative disorders. While peroxisome proliferator-activated receptor gamma (PPARγ) agonists have demonstrated potential therapeutic actions on neuroinflammation, their prolonged use, such as with rosiglitazone, can lead to cardiac risks and lipid differentiation disorders. In this study, we investigated the effects of a newly synthesized PPARγ agonist, VSP-2, on secretion of inflammatory cytokines in BV2 cells. Treatment with VSP-2 significantly reduced the mRNA and protein levels of proinflammatory cytokines such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, VSP-2 attenuated the phosphorylation of nuclear factor kappa B (NF-κB) (65 kD) and IκBα, as well as the nuclear translocation of NF-κB (65 kD). Additionally, the use of PPARγ small interfering RNA was able to attenuate the effects of VSP-2 on proinflammatory cytokines and the NF-κB pathway. In conclusion, our findings suggest that VSP-2 effectively suppressed the expressions of IL-1β, IL-6, and TNF-α via the PPARγ/NF-κB signaling pathway. Given its potential therapeutic benefits, VSP-2 may emerge as a promising candidate for the treatment of neurodegenerative diseases or brain injuries associated with neuroinflammation.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3