A data mining technique for detecting malignant mesothelioma cancer using multiple regression analysis

Author:

Alali Abdulla Mousa Falah1,Padmaja Dhyaram Lakshmi2,Soni Mukesh3,Khan Muhammad Attique4,Khan Faheem5,Ofori Isaac6

Affiliation:

1. Department of Computer Science, Isra University , Amman , Jordan

2. Department of Information Technology, Anurag University , Hyderabad , Telangana , India

3. Department of CSE, University Centre for Research & Development, Chandigarh University , Mohali , Punjab 140413 , India

4. Department of Computer Science and Mathematics, Lebanese American University , Beirut , Lebanon

5. Department of Computer Engineering, Gachon University , Seongnam-si , South Korea

6. Department of Environmental and Safety Engineering, University of Mines and Technology (UMaT) , Tarkwa , Ghana

Abstract

Abstract Lung cancer is a substantial health issue globally, and it is one of the main causes of mortality. Malignant mesothelioma (MM) is a common kind of lung cancer. The majority of patients with MM have no symptoms. In the diagnosis of any disease, etiology is crucial. MM risk factor detection procedures include positron emission tomography, magnetic resonance imaging, biopsies, X-rays, and blood tests, which are all necessary but costly and intrusive. Researchers primarily concentrated on the investigation of MM risk variables in the study. Mesothelioma symptoms were detected with the help of data from mesothelioma patients. The dataset, however, included both healthy and mesothelioma patients. Classification algorithms for MM illness diagnosis were carried out using computationally efficient data mining techniques. The support vector machine outperformed the multilayer perceptron ensembles (MLPE) neural network (NN) technique, yielding promising findings. With 99.87% classification accuracy achieved using 10-fold cross-validation over 5 runs, SVM is the best classification when contrasted to the MLPE NN, which achieves 99.56% classification accuracy. In addition, SPSS analysis is carried out for this study to collect pertinent and experimental data.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrasound-Guided Deep Learning for Regional Nerve Block Anesthesia in Scapular Fracture;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3