Distinguish Dianthus species or varieties based on chloroplast genomes

Author:

Meng Dong12,Yang Liu2,Yunlin Zhao2,Guiyan Yang3,Shuwen Chen3,Zhenggang Xu123

Affiliation:

1. Hunan Provincial Key Lab of Dark Tea and Jin-hua, School of Materials and Chemical Engineering, Hunan City University , Yiyang 413000, Hunan , China

2. Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, College of Life Science and Technology, Central South University of Forestry and Technology , Changsha 410004, Hunan , China

3. College of Forestry, Northwest A & F University , Yangling 712100, Shaanxi , China

Abstract

Abstract Most plants belonging to the widely distributed genus Dianthus are used for gardening. Interspecific hybridization of different Dianthus species leads to blurred genetic backgrounds. To obtain more genomic resources and understand the phylogenetic relationships among Dianthus species, the chloroplast genomes of 12 Dianthus species, including nine Dianthus gratianopolitanus varieties, were analyzed. The chloroplast genomes of these 12 species exhibited similar sizes (149,474–149,735 bp), with Dianthus caryophyllus having a chloroplast genome size of 149,604 bp marked by a significant contraction in inverted repeats. In the chloroplast genome of Dianthus, we identified 124–126 annotated genes, including 83–84 protein-coding genes. Notably, D. caryophyllus had 83 protein-coding genes but lacked rpl2. The repeat sequences of the chloroplast genome were consistent among species, and variations in the sequence were limited and not prominent. However, notable gene replacements were observed in the boundary region. Phylogenetic analysis of Dianthus indicated that D. caryophyllus and D. gratianopolitanus were most closely related, suggesting that the degree of variation within nine Dianthus varieties was no less than the variation observed between species. These differences provide a theoretical foundation for a more comprehensive understanding of the diversity within Dianthus species.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3