Improving grape fruit quality through soil conditioner: Insights from RNA-seq analysis of Cabernet Sauvignon roots

Author:

Jiang Peng1,Wang Xiaojing2,Wang Rui13

Affiliation:

1. College of Agronomy, Ningxia University , Yinchuan 750021 , P.R. China

2. Ningxia Research Institute of Quality Standards and Testing Technology of Agricultural Products , Yinchuan 750001 , P.R. China

3. Ningxia Grape and Wine Research Institute , Yinchuan 750021 , P.R. China

Abstract

Abstract The application of fertilizers and soil quality are crucial for grape fruit quality. However, the molecular data linking different fertilizer (or soil conditioner [SC]) treatments with grape fruit quality is still lacking. In this study, we investigated three soil treatments, namely inorganic fertilizer (NPK, 343.5 kg/hm2 urea [N ≥ 46%]; 166.5 kg/hm2 P2O5 [P2O5 ≥ 64%]; 318 kg/hm2 K2O [K2O ≥ 50%]), organic fertilizer (Org, 9 t/hm2 [organic matter content ≥ 35%, N + P2O5 + K2O ≥ 13%]), and SC (SC, 3 t/hm2 [humic acid ≥ 38.5%; C, 56.1%; H, 3.7%; N, 1.5%; O, 38%; S, 0.6%]), on 4-year-old Cabernet Sauvignon grapevines. Compared with the NPK- and Org-treated groups, the SC significantly improved the levels of soluble solids, tannins, anthocyanins, and total phenols in the grape berries, which are important biochemical indicators that affect wine quality. Furthermore, we conducted RNA-seq analysis on the grapevine roots from each of the three treatments and used weighted gene co-expression network analysis to identify five hub genes that were associated with the biochemical indicators of the grape berries. Furthermore, we validated the expression levels of three hub genes (ERF, JP, and SF3B) and five selected genes related to anthocyanin biosynthesis (UFGT1, UFGT2, UFGT3, GST, and AT) by using quantitative reverse transcription-polymerase chain reaction. Compared to the NPK and Org treatment groups, the SC treatment resulted in a significant increase in the transcription levels of three hub genes as well as VvUFGT1, VvUFGT3, VvGST, and VvAT. These results suggest that the SC can improve grape fruit quality by altering gene transcription patterns in grapevine roots and further influence the biochemical indices of grape fruits, particularly anthocyanin content. This study reveals that the application of SC can serve as an important measure for enhancing vineyard SC and elevating grape quality.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3