Single-cell transcription analysis reveals the tumor origin and heterogeneity of human bilateral renal clear cell carcinoma

Author:

Wan Zhengqiang1,Wang Yinglei2,Li Aiqun3,Li Cheng1,Zheng Dongbing2

Affiliation:

1. The Second Clinical Medical College of Binzhou Medical University , Shandong , China

2. The Second Ward of Urology, Yantai Affiliated Hospital of Binzhou Medical University , Shandong , China

3. Emergency Surgery, Yantai Affiliated Hospital of Binzhou Medical University , Shandong , China

Abstract

Abstract Bilateral renal clear cell carcinoma (BRCC) is a rare type of renal cell carcinoma (RCC) that accounts for only 1–5% of RCC cases and has a poor clinical prognosis. The origin, tumor microenvironment, cellular molecular features, and intra-tumoral heterogeneity of BRCC are still unclear. We downloaded BRCC single-cell transcriptome sequencing data from the gene expression omnibus database biochip GSE171306, containing 3,575 cells from left-sided clear cell renal cell carcinoma (ccRCC) and 3,568 cells from right-sided ccRCC, and used a series of R packages for data quality control (QC) and subsequent analysis of BRCC single-cell transcriptome data, including the use of the R packages Seurat and scCancer for cell QC, identification of major cell types, and cell annotation; R package scran for calculation of cell cycle scores; R package infercnv for malignancy scoring of tumor cells; R package ReactomeGSA for functional enrichment analysis; R package Monocle 2 for the analysis of cell differentiation trajectories; and R package CellphoneDB for the analysis of intercellular interactions. In this study, by analyzing the high-quality single-cell transcriptome data of BRCC, we identified 18 cell types and found that left- and right-sided ccRCC were approximately the same in terms of cell type and the number of each cell but differed significantly in terms of tumor cell malignancy score, tumor microenvironment, and cell stemness score. In the cell differentiation trajectory analysis of BRCC, we found that endothelial cells and macrophages play an extremely important role in its tumor progression. Further cell communication analysis was performed, and we found that it may signal through ligand–receptors, such as vascular endothelial growth factor–vascular endothelial growth factor receptor1 (VEGF–VEGFR1), MIF–(CD74-CXCR4), and growth arrest-specific protein 6–AXL, to influence the development of BRCC. The analysis of single-cell transcriptomic data of human BRCC suggests that left- and right-sided ccRCC may be of the same tumor origin, but the left-sided ccRCC is more malignant and has a better immune response.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3