Effect of ketogenic diet on exercise tolerance and transcriptome of gastrocnemius in mice

Author:

Zhang Jie1,Chen Bo2,Zou Ke3

Affiliation:

1. Department of Police Physical Training, Zhejiang Police Collage , Zhejiang , China

2. Department of Physical Education, Beijing University of Chemical Technology , 15 North Third Ring East Road, Chaoyang District , Beijing , 100029 , China

3. School of Physical Education, Huaibei Normal University , Anhui , China

Abstract

Abstract Ketogenic diet (KD) has been proven to be an optional avenue in weight control. However, the impacts of KD on muscle strength and exercise endurance remain unclear. In this study, mice were randomly allocated to normal diet and KD groups to assess their exercise tolerance and transcriptomic changes of the gastrocnemius. KD suppressed body-weight and glucose levels and augmented blood ketone levels of mice. The total cholesterol, free fatty acids, and β-hydroxybutyric acid levels were higher and triglycerides and aspartate aminotransferase levels were lower in KD group. There was no notable difference in running distance/time and weight-bearing swimming time between the two groups. Furthermore, KD alleviated the protein levels of PGC-1α, p62, TnI FS, p-AMPKα, and p-Smad3, while advancing the LC3 II and TnI SS protein levels in the gastrocnemius tissues. RNA-sequencing found that 387 differentially expressed genes were filtered, and Cpt1b, Acadl, Eci2, Mlycd, Pdk4, Ptprc, C1qa, Emr1, Fcgr3, and Ctss were considered to be the hub genes. Our findings suggest that KD effectively reduced body weight but did not affect skeletal muscle strength and exercise endurance via AMPK/PGC-1α, Smad3, and p62/LC3 signaling pathways and these hub genes could be potential targets for muscle function in KD-treated mice.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3