Chlorate-induced molecular floral transition revealed by transcriptomes

Author:

Li Songgang12,Chen Houbin2,Hong Jiwang1,Ye Xiuxu1,Wang Jiabao1,Chen Yeyuan1,Zhang Lei1,Su Zuanxian2,Yang Ziqin1

Affiliation:

1. Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences , Haikou 571101, Hainan , China

2. College of Horticulture, South China Agricultural University , Guangzhou 510642 , Guangdong , China

Abstract

Abstract Flowering in off-season longan (Dimocarpus longan L.) can be induced effectively by the application of potassium chlorate (KClO3), but the mechanism of the physiological induction is largely unknown to decipher its mechanism and identify genes potentially regulating the process, and comparative analysis via RNA-Seq was performed between vegetative and KClO3-induced floral buds. A total of 18,649 differentially expressed genes (DEGs) were identified between control and treated samples. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that DEGs related to plant hormone signal transduction, mitogen-activated protein kinase (MAPK) signaling pathway, starch and sucrose metabolism, and phenylpropanoid biosynthesis were enriched in our data. A total of 29 flowering-related DEGs were identified in our study, such as APETALA1 (AP1), APETALA2 (AP2), AUXIN RESPONSE FACTOR 3/ETTIN (ARF3), SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 8 (SPL8), AGAMOUS (AG), and others. The upregulation of AP2 and SPL genes indicates that the age-related pathway is activated and influences the floral induction in KClO3-induced longan floral buds by coordinated regulation of genes related to AP1, AG, and ARF3. This study provides a valuable resource for studying molecular mechanisms underlying chlorate-induced floral transition in off-season longan, which may benefit the development and production of off-season tropical/subtropical fruit trees.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3