Affiliation:
1. Department of Histology and Embryology, Xiangya School of Medicine, Central South University , Changsha , Hunan, 420013 , China
Abstract
Abstract
N6-methyladenosine (m6A) is a representative of RNA methylation modification, which plays a critical role in the epigenetic modification process of regulating human diseases. As a key protein for m6A, methyltransferase 3 (METTL3) had been identified to be associated with a variety of diseases. The publications related to METTL3 were searched in the Web of Science Core Collection from the earliest mention to July 1st, 2022. Being screened by the retrieval strategy, a total of 1,738 articles related to METTL3 were retrieved. Much of our work focused on collecting the data of annual publication outputs, high-yielding countries/regions/authors, keywords, citations, and journals frequently published for qualitative and quantitative analysis. We found that diseases with high correlations to METTL3 not only included various known cancers but also obesity and atherosclerosis. In addition to m6A-related enzyme molecules, the most frequent key molecules were MYC proto-oncogene (C-MYC), Enhancer of zeste homolog 2 (EZH2), and Phosphatase and tensin homolog deleted on chromosome 10 (PTEN). METTL3 and methyltransferase 14 (METTL14) may function through opposite regulatory pathways in the same disease. “Leukemia,” “Liver Cancer,” and “Glioblastoma” were speculated to be potential hotspots in METTL3 related study. The number of publications had significantly surged year by year, demonstrating the growing importance of the research on epigenetic modification in the pathology of various diseases.
Subject
General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience
Reference47 articles.
1. Pan T. N6-methyl-adenosine modification in messenger and long non-coding RNA. Trends Biochem Sci. 2013;38(4):204–9.
2. Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem. 1994;269(26):17697–704.
3. Zhang BY, Han L, Tang YF, Zhang GX, Fan XL, Zhang JJ, et al. METTL14 regulates M6A methylation-modified primary miR-19a to promote cardiovascular endothelial cell proliferation and invasion. Eur Rev Med Pharmacol Sci. 2020;24(12):7015–23.
4. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–5.
5. Zeng C, Huang W, Li Y, Weng H. Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol. 2020;13(1):117.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献