Gut microbiota changes associated with low-carbohydrate diet intervention for obesity

Author:

Li Li1,Zhao Xiaoguo2,Abdugheni Rashidin3,Yu Feng2,Zhao Yunyun2,Ma Ba-Fang4,Yang Zhifang1,Li Rongrong1,Li Yue1,Maimaitiyiming Yasen45,Maimaiti Mayila1

Affiliation:

1. Clinical Nutrition Department of the First Affiliated Hospital of Xinjiang Medical University , Urumqi 830011, Xinjiang , China

2. School of Public Health, Xinjiang Medical University , Urumqi 830011, Xinjiang , China

3. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences , Urumqi , China

4. Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University , Urumqi 830011, Xinjiang , China

5. Department of Public Health, and Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine , Hangzhou 310058, Zhejiang , China

Abstract

Abstract Low-carbohydrate diets (LCDs) are frequently recommended for alleviating obesity, and the gut microbiota plays key roles in energy metabolism and weight loss. However, there is limited in-human research on how LCD changes gut microbiota. In this before–after study, 43 participants were assigned to the LCD intervention for 4 weeks. The main objective was to investigate the specific changes that occur in the participants’ microbiome in response to the LCD. Changes in gut microbiota were analyzed using 16s rRNA sequencing. Body composition was measured using InBody 770. Remarkably, 35 participants (79.07%) lost more than 5% of their body weight; levels of BMI, body fat, and total cholesterol were significantly decreased, indicating the effectiveness of the LCD intervention. The richness of microbiota significantly increased after the intervention. By taking the intersection of ANOVA and linear discriminant analysis effect size (LEfSe) analysis results, we identified three phyla, three classes, four orders, five families, and six genera that were differentially enriched between baseline and week-4 time points. Among the three phyla, relative abundances of Firmicutes and Actinobacteriota decreased significantly, while Bacteroidetes increased significantly. At the genus level, Ruminococcus, Agathobacter, Streptococcus, and Bifidobacterium showed a significant reduction in relative abundances, whereas Parabacteroides and Bacteroides increased steadily. Our results demonstrate that LCD can effectively alleviate obesity and modify certain taxa of gut microbiota, providing potential insights for personalized dietary interventions against obesity.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3