PTTG1 induces pancreatic cancer cell proliferation and promotes aerobic glycolysis by regulating c-myc

Author:

Wang Yong1,Hu Jianping1,Chen Chen1,Li Yongbo1

Affiliation:

1. Department of General Surgery, Suqian First Hospital , No. 120 Suzhi Road, Sucheng District , Suqian , Jiangsu Province, 223800 , China

Abstract

Abstract This study aimed to clarify the role of pituitary tumor-transforming gene 1 (PTTG1) in proliferation, migration, invasion, and aerobic glycolysis of pancreatic cancer cells, and evaluate the potential of PTTG1 as a therapeutic target. PTTG1 expression in pancreatic cancers was analyzed using the GEPIA databank. In the Panc1 cell with the PTTG1 knockdown or Mia-PaCa2 cells with PTTG1 overexpression, the cell proliferation was evaluated using cell viability curves and colony formation, and wound heal assay and transwell assay were performed to evaluate the migration and invasion, respectively. Furthermore, a western blot was performed to evaluate the expressions of PTTG1, proliferating cell nuclear antigen, E-cadherin, N-cadherin, and c-myc. Meanwhile, the glucose uptake, extracellular acidification rates (ECAR), and oxygen consumption rates (OCR) were analyzed. Our results showed that PTTG1 expression is upregulated in pancreatic cancer, which promoted cell proliferation. Low PTTG1 contributed to higher disease-free survival and overall survival. In Panc1 cell, PTTG1 knockdown resulted in reduced cell viability and colony formation. The migration and invasion abilities of the cells were also reduced in Panc1 with PTTG1 knockdown. Correspondingly, PTTG1 knockdown decreased c-myc expression, glucose uptake, ECAR, and OCR in Panc1 cells. In Mia-PaCa2 cells, PTTG1 overexpression promoted cell proliferation, aerobic glycolysis, and translocation of β-catenin to the nucleus by regulating c-myc. In conclusion, PTTG1 induces proliferation, migration, and invasion, and promotes aerobic glycolysis in pancreatic cancer cells via regulating c-myc, demonstrating the potential of PTTG1 as a therapeutic target.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3