Hepatobiliary surgery based on intelligent image segmentation technology

Author:

Wang Fuchuan1,Xiao Chaohui2,Jia Tianye3,Pan Liru2,Du Fengxia1,Wang Zhaohai2

Affiliation:

1. Faculty of Hepatology Medicine, Chinese People’s Liberation Army (PLA) General Hospital , Beijing 100039 , China

2. Faculty of Hepato-Biliary-Pancreatic Surgery, Chinese People’s Liberation Army (PLA) General Hospital , Beijing 100853 , China

3. Department of Laboratory, Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital , Beijing 100039 , China

Abstract

Abstract Liver disease is an important disease that seriously threatens human health. It accounts for the highest proportion in various malignant tumors, and its incidence rate and mortality are on the rise, seriously affecting human health. Modern imaging has developed rapidly, but the application of image segmentation in liver tumor surgery is still rare. The application of image processing technology represented by artificial intelligence (AI) in surgery can greatly improve the efficiency of surgery, reduce surgical complications, and reduce the cost of surgery. Hepatocellular carcinoma is the most common malignant tumor in the world, and its mortality is second only to lung cancer. The resection rate of liver cancer surgery is high, and it is a multidisciplinary surgery, so it is necessary to explore the possibility of effective switching between different disciplines. Resection of hepatobiliary and pancreatic tumors is one of the most challenging and lethal surgical procedures. The operation requires a high level of doctors’ experience and understanding of anatomical structures. The surgical segmentation is slow and there may be obvious complications. Therefore, the surgical system needs to make full use of the relevant functions of AI technology and computer vision analysis software, and combine the processing strategy based on image processing algorithm and computer vision analysis model. Intelligent optimization algorithm, also known as modern heuristic algorithm, is an algorithm with global optimization performance, strong universality, and suitable for parallel processing. This algorithm generally has a strict theoretical basis, rather than relying solely on expert experience. In theory, the optimal solution or approximate optimal solution can be found in a certain time. This work studies the hepatobiliary surgery through intelligent image segmentation technology, and analyzes them through intelligent optimization algorithm. The research results showed that when other conditions were the same, there were three patients who had adverse reactions in hepatobiliary surgery through intelligent image segmentation technology, accounting for 10%. The number of patients with adverse reactions in hepatobiliary surgery by conventional methods was nine, accounting for 30%, which was significantly higher than the former, indicating a positive relationship between intelligent image segmentation technology and hepatobiliary surgery.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3