Cloning and expression analysis of VrNAC13 gene in mung bean

Author:

Zhang Siyu1,Ai Jing1,Guo Yaning1,Bai Yu1,Yao Han1,Wang Fugang1

Affiliation:

1. School of Life Sciences, Yulin University , Yulin , P. R. China

Abstract

Abstract To explore the role of NAC transcription factors in mung bean (Vigna ratiata), we here comprehensively analyzed VrNAC13 structure and expression patterns in the mung bean cultivar “Yulin No.1”. The nucleotide sequence of VrNAC13 (GenBank accession number xp014518431.1) was determined by cloning and sequencing the gene. A predicted transcriptional activation domain in VrNAC13 was validated with a yeast one-hybrid assay. The composition and functional characteristics of VrNAC13 were analyzed using basic bioinformatics techniques, and the expression characteristics of VrNAC13 were analyzed via quantitative reverse transcription-PCR. The results showed that VrNAC13 was 1,068 bp in length and encoded a product of 355 amino acids. VrNAC13 was predicted to contain a NAM domain and to belong to the NAC transcription factor family. The protein was hydrophilic and contained several threonine phosphorylation sites. Phylogenetic analysis showed that VrNAC13 was highly similar in sequence to two Arabidopsis thaliana NAC proteins; we hypothesize that VrNAC13 may perform functions in mung bean similar to those of the two closely related proteins in Arabidopsis. Promoter analysis of VrNAC13 revealed cis-acting elements predicted to respond to abscisic acid (ABA), gibberellin, auxin, light, drought, low temperature, and other stressors. VrNAC13 was most highly expressed in the leaves and expressed at very low levels in the stem and root. It was experimentally determined to be induced by drought and ABA. Based on these results, VrNAC13 appears to regulate stress resistance in mung bean.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3