Identification of winter wheat pests and diseases based on improved convolutional neural network

Author:

Yao Jianbin1,Liu Jianhua1,Zhang Yingna1,Wang Hansheng1

Affiliation:

1. School of Information Engineering, North China University of Water Resources and Electric Power , Zhengzhou , 450046 , China

Abstract

Abstract Wheat pests and diseases are one of the main factors affecting wheat yield. According to the characteristics of four common pests and diseases, an identification method based on improved convolution neural network is proposed. VGGNet16 is selected as the basic network model, but the problem of small dataset size is common in specific fields such as smart agriculture, which limits the research and application of artificial intelligence methods based on deep learning technology in the field. Data expansion and transfer learning technology are introduced to improve the training mode, and then attention mechanism is introduced for further improvement. The experimental results show that the transfer learning scheme of fine-tuning source model is better than that of freezing source model, and the VGGNet16 based on fine-tuning all layers has the best recognition effect, with an accuracy of 96.02%. The CBAM-VGGNet16 and NLCBAM-VGGNet16 models are designed and implemented. The experimental results show that the recognition accuracy of the test set of CBAM-VGGNet16 and NLCBAM-VGGNet16 is higher than that of VGGNet16. The recognition accuracy of CBAM-VGGNet16 and NLCBAM-VGGNet16 is 96.60 and 97.57%, respectively, achieving high precision recognition of common pests and diseases of winter wheat.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tomato Leaf Disease Classification by Combining EfficientNetv2 and a Swin Transformer;Applied Sciences;2024-08-23

2. Leaf disease detection using deep Convolutional Neural Networks;Journal of Physics: Conference Series;2024-02-01

3. Tomato leaf diseases classification with convolutional neural network;2023 4th International Conference on Computer Engineering and Intelligent Control (ICCEIC);2023-10-20

4. Identification Technology of Tomato Leaf Pests and Diseases Based on CNN;Computer Science and Application;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3