In silico analysis of glycosyltransferase 2 family genes in duckweed (Spirodela polyrhiza) and its role in salt stress tolerance

Author:

Jiang Mingliang12,Wang Peng3,Xu Ligang1,Ye Xiuxu3,Fan Hongxiang1,Cheng Junxiang1,Chen Jinting3

Affiliation:

1. Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences , Nanjing 210008 , China

2. College of Resources and Environment, University of Chinese Academy of Sciences , Beijing 100049 , China

3. Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences & Ministry of Agriculture Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China , No. 4 Xueyuan Road , Haikou 571100 , Hainan , China

Abstract

Abstract Plant glycosyltransferase 2 (GT2) family genes are involved in plant abiotic stress tolerance. However, the roles of GT2 genes in the abiotic resistance in freshwater plants are largely unknown. We identified seven GT2 genes in duckweed, remarkably more than those in the genomes of Arabidopsis thaliana, Oryza sativa, Amborella trichopoda, Nymphaea tetragona, Persea americana, Zostera marina, and Ginkgo biloba, suggesting a significant expansion of this family in the duckweed genome. Phylogeny resolved the GT2 family into two major clades. Six duckweed genes formed an independent subclade in Clade I, and the other was clustered in Clade II. Gene structure and protein domain analysis showed that the lengths of the seven duckweed GT2 genes were varied, and the majority of GT2 genes harbored two conserved domains, PF04722.12 and PF00535.25. The expression of all Clade I duckweed GT2 genes was elevated at 0 h after salt treatment, suggesting a common role of these genes in rapid response to salt stress. The gene Sp01g00794 was highly expressed at 12 and 24 h after salt treatment, indicating its association with salt stress resilience. Overall, these results are essential for studies on the molecular mechanisms in stress response and resistance in aquatic plants.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3