Analysis of bacterial community structure of Fuzhuan tea with different processing techniques

Author:

Liu Shiquan1,Li Taotao1,Yu Songlin1,Zhou Xiaohong1,Liu Zhanjun1,Zhang Xuemao2,Cai Hongmei2,Hu Zhiyuan3

Affiliation:

1. Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University , Yiyang City , Hunan Province, 413000 , China

2. Yiyang Guan-Longyu Dark Tea Development Co., Ltd , Yiyang City , Hunan Province, 413000 , China

3. Department of Hunan Provincial Key Lab of Dark Tea and Jin-hua, Hunan City University , No. 518 Yingbin Road , Yiyang City , Hunan Province, 413000 , China

Abstract

Abstract The composition and diversity of microbial communities are of considerable significance to the quality development of Camellia sinensis (Fuzhuan tea). In this study, we examined differences in the bacterial community structures of loose, lightly-pressed, hand-made, and machine-pressed Fuzhuan teas and raw dark tea. We observed notable differences in the bacterial communities of the five groups, where there were only 51 consensus sequences. ASV/OTU Venn diagram, Chao1, Ace, Simpson indices, and dilution curve analyses consistently revealed that machine-pressed tea exhibited the highest bacterial diversity. Taxonomically, Actinobacteria, Firmicutes, Proteobacteria, and Cyanobacteria were the dominant bacterial phyla in each group, whereas Corynebacterium, Methylobacterium, and Bifidobacterium were the dominant genera. Our findings revealed significant differences in the bacterial community structures of different Fuzhuan tea products derived from the same raw material, with bacterial diversity rising with increased product compaction.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3