Comparison of axon extension: PTFE versus PLA formed by a 3D printer

Author:

Kawai Naofumi1,Bando Mizuki2,Yuasa Kento1,Shibasaki Masayuki1

Affiliation:

1. Department of Anesthesiology, Kyoto Prefectural University of Medicine , 465 Kajiicho, Kamigyo-Ku, Kyoto-Shi , Kyoto-Fu 604-8404 , Japan

2. Department of Anesthesiology, Akashi City Hospital , 1-33, Takasho-Machi, Akashi-Shi , Hyogo-Ken, 673-8501 , Japan

Abstract

Abstract Three-dimensional (3D) printers mainly create 3D objects by stacking thin layers of material. The effect of the tools created using the fused deposition modeling (FDM) 3D printer on nerve cells remains unclear. In this study, the effects of polytetrafluoroethylene (PTFE) models and two different types of polylactic acid (PLA) models (white or natural), were created using the FDM 3D printer on axon extension were compared using the Campenot chamber. Neurons were isolated from the dorsal root ganglia and added to the central compartment of the Campenot chambers after isolation, processing, and culturing. On day 7, after the initiation of the culture, the difference of the axon extensions to the side compartments of each group was confirmed. We also compared the pH and the amount of leakage when each of these chambers was used. The PLA was associated with a shorter axon extension than the PTFE (white p = 0.0078, natural p = 0.00391). No difference in the pH was observed (p = 0.347), but there was a significant difference on multiple group comparison (p = 0.0231) in the amount of leakage of the medium. PTFE was found to be a more suitable material for culturing attachments.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3