Affiliation:
1. Department of Mathematics , [ 34915]National Chung Cheng University, 168 University Road , Min-Hsiung , Chia-Yi 621 , Taiwan
Abstract
Abstract
We will give a new proof of the existence of non-compact homothetic solitons of the inverse mean curvature flow in
ℝ
n
×
ℝ
{\mathbb{R}^{n}\times\mathbb{R}}
,
n
≥
2
{n\geq 2}
, of the form
(
r
,
y
(
r
)
)
{(r,y(r))}
or
(
r
(
y
)
,
y
)
{(r(y),y)}
, where
r
=
|
x
|
{r=|x|}
,
x
∈
ℝ
n
{x\in\mathbb{R}^{n}}
, is the radially symmetric coordinate and
y
∈
ℝ
{y\in\mathbb{R}}
. More precisely for any
1
n
<
λ
<
1
n
-
1
{\frac{1}{n}<\lambda<\frac{1}{n-1}}
and
μ
<
0
{\mu<0}
, we will give a new proof of the existence of a unique solution
r
(
y
)
∈
C
2
(
μ
,
∞
)
∩
C
(
[
μ
,
∞
)
)
{r(y)\in C^{2}(\mu,\infty)\cap C([\mu,\infty))}
of the equation
r
y
y
(
y
)
1
+
r
y
(
y
)
2
=
n
-
1
r
(
y
)
-
1
+
r
y
(
y
)
2
λ
(
r
(
y
)
-
y
r
y
(
y
)
)
,
r
(
y
)
>
0
,
\frac{r_{yy}(y)}{1+r_{y}(y)^{2}}=\frac{n-1}{r(y)}-\frac{1+r_{y}(y)^{2}}{%
\lambda(r(y)-yr_{y}(y))},\quad r(y)>0,
in
(
μ
,
∞
)
{(\mu,\infty)}
which satisfies
r
(
μ
)
=
0
{r(\mu)=0}
and
r
y
(
μ
)
=
lim
y
↘
μ
r
y
(
y
)
=
+
∞
{r_{y}(\mu)=\lim_{y\searrow\mu}r_{y}(y)=+\infty}
. We prove that there exist constants
y
2
>
y
1
>
0
y_{2}>y_{1}>0
such that
r
y
(
y
)
>
0
r_{y}(y)>0
for any
μ
<
y
<
y
1
\mu<y<y_{1}
,
r
y
(
y
1
)
=
0
r_{y}(y_{1})=0
,
r
y
(
y
)
<
0
r_{y}(y)<0
for any
y
>
y
1
y>y_{1}
,
r
y
y
(
y
)
<
0
r_{yy}(y)<0
for any
μ
<
y
<
y
2
\mu<y<y_{2}
,
r
y
y
(
y
2
)
=
0
r_{yy}(y_{2})=0
and
r
y
y
(
y
)
>
0
{r_{yy}(y)>0}
for any
y
>
y
2
{y>y_{2}}
. Moreover,
lim
y
→
+
∞
r
(
y
)
=
0
{\lim_{y\to+\infty}r(y)=0}
and
lim
y
→
+
∞
y
r
y
(
y
)
=
0
{\lim_{y\to+\infty}yr_{y}(y)=0}
.