Affiliation:
1. Departamento de Matemática , Universidade Federal de São Carlos , CEP 13565-905 , São Carlos , SP , Brazil
2. Departamento de Matemática , Universidade Federal de Minas Gerais , Caixa Postal 702, 30123-970 , Belo Horizonte , MG , Brazil
Abstract
Abstract
The paper is concerned with Lane–Emden and Brezis–Nirenberg problems involving the affine p-Laplace nonlocal operator
Δ
p
𝒜
{\Delta_{p}^{\cal A}}
, which has been introduced in [J. Haddad, C. H. Jiménez and M. Montenegro,
From affine Poincaré inequalities to affine spectral inequalities,
Adv. Math. 386 2021, Article ID 107808] driven by the affine
L
p
{L^{p}}
energy
ℰ
p
,
Ω
{{\cal E}_{p,\Omega}}
from convex geometry due to [E. Lutwak, D. Yang and G. Zhang,
Sharp affine
L
p
L_{p}
Sobolev inequalities,
J. Differential Geom. 62 2002, 1, 17–38]. We are particularly interested in the existence and nonexistence of positive
C
1
{C^{1}}
solutions of least energy type. Part of the main difficulties are caused by the absence of convexity of
ℰ
p
,
Ω
{{\cal E}_{p,\Omega}}
and by the comparison
ℰ
p
,
Ω
(
u
)
≤
∥
u
∥
W
0
1
,
p
(
Ω
)
{{\cal E}_{p,\Omega}(u)\leq\|u\|_{W^{1,p}_{0}(\Omega)}}
generally strict.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Fundação de Amparo à Pesquisa do Estado de Minas Gerais
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献