Affiliation:
1. Mathematic Department , CY University , Cergy-Pontoise, Site de Saint-Martin, 2 avenue Adolphe Chauvin, 95302 Cergy-Pontoise cedex , France
Abstract
Abstract
Let
(
M
,
g
)
{(M,g)}
be a smooth compact Riemannian manifold of
dimension
n
≥
3
{n\geq 3}
. Let also A be a smooth symmetrical
positive
(
0
,
2
)
{(0,2)}
-tensor field in M. By the Sobolev embedding
theorem, we can write that there exist
K
,
B
>
0
{K,B>0}
such that for
any
u
∈
H
1
(
M
)
{u\in H^{1}(M)}
,
(0.1)
∥
u
∥
L
2
⋆
2
≤
K
∥
∇
A
u
∥
L
2
2
+
B
∥
u
∥
L
1
2
\|u\|_{L^{2^{\star}}}^{2}\leq K\|\nabla_{A}u\|_{L^{2}}^{2}+B\|u\|_{L^{1}}^{2}
where
H
1
(
M
)
{H^{1}(M)}
is the standard Sobolev space of functions
in
L
2
{L^{2}}
with one derivative in
L
2
{L^{2}}
,
|
∇
A
u
|
2
=
A
(
∇
u
,
∇
u
)
{|\nabla_{A}u|^{2}=A(\nabla u,\nabla u)}
and
2
⋆
{2^{\star}}
is the critical Sobolev exponent for
H
1
{H^{1}}
. We compute in this paper the value of the best possible K in (0.1) and investigate the validity of
the corresponding sharp inequality.
Subject
Applied Mathematics,Analysis
Reference19 articles.
1. T. Aubin,
Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire,
J. Math. Pures Appl. (9) 55 (1976), no. 3, 269–296.
2. T. Aubin,
Problèmes isopérimétriques et espaces de Sobolev,
J. Differential Geom. 11 (1976), no. 4, 573–598.
3. W. Beckner,
On the Grushin operator and hyperbolic symmetry,
Proc. Amer. Math. Soc. 129 (2001), no. 4, 1233–1246.
4. L. A. Caffarelli, B. Gidas and J. Spruck,
Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,
Comm. Pure Appl. Math. 42 (1989), no. 3, 271–297.
5. S. Collion, E. Hebey and M. Vaugon,
Sharp Sobolev inequalities in the presence of a twist,
Trans. Amer. Math. Soc. 359 (2007), 2531–2537.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献