Synthetic data generation for the continuous development and testing of autonomous construction machinery

Author:

Schuster Alexander1,Hagmanns Raphael2,Sonji Iman1,Löcklin Andreas1,Petereit Janko2,Ebert Christof34,Weyrich Michael1

Affiliation:

1. University of Stuttgart, Institute of Industrial Automation and Software Engineering (IAS) , Stuttgart , Germany

2. Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB , Karlsruhe , Germany

3. Vector Consulting Services GmbH , Stuttgart , Germany

4. Robo-Test , Stuttgart , Germany

Abstract

Abstract The development and testing of autonomous systems require sufficient meaningful data. However, generating suitable scenario data is a challenging task. In particular, it raises the question of how to narrow down what kind of data should be considered meaningful. Autonomous systems are characterized by their ability to cope with uncertain situations, i.e. complex and unknown environmental conditions. Due to this openness, the definition of training and test scenarios cannot be easily specified. Not all relevant influences can be sufficiently specified with requirements in advance, especially for unknown scenarios and corner cases, and therefore the “right” data, balancing quality and efficiency, is hard to generate. This article discusses the challenges of automated generation of 3D scenario data. We present a training and testing loop that provides a way to generate synthetic camera and Lidar data using 3D simulated environments. Those can be automatically varied and modified to support a closed-loop system for deriving and generating datasets that can be used for continuous development and testing of autonomous systems.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3