Economic power control for offshore wind farms with loop connection cables

Author:

Scholz Janine1,Wiebe Eduard1,Scheffer Volker2,Becker Christian2

Affiliation:

1. Amprion GmbH , Hamburg , Germany

2. Institute of Electrical Power and Energy Technology , Hamburg University of Technology , Hamburg , Germany

Abstract

Abstract The Canadian developer and owner of green power facilities Northland Power Inc. owns two offshore wind farms (OWFs) in the German Bight, Deutsche Bucht and Nordsee One, operated by the subsidiary Northland Power Europe GmbH. The company supports and conducts research in the field of power flow optimization in wind farm networks. The work at hand represents the results of this effort to maximize the efficiency of the assets. The project was accomplished within a cooperation between the Nordsee One GmbH and the Institute of Electrical Power and Energy Technology at the Hamburg University of Technology. From an external point of view, an OWF represents an “en bloc” power plant connected to the onshore transmission grid via power export cables. Nevertheless, such a power plant comprises a complex, large-scale internal medium voltage network. In case of failure or cable outage, the network topology of an OWF may be modified and unintended overloading of inter-array cables (IACs) is possible. In order to address this issue, a new algorithm and software tool for economic power control in OWFs are introduced in the following which can be employed in wind farms with integrated loop connection cables (LCCs). This configuration particularly entails the risk of overloading cable segments depending on the present wind speed. The new algorithm provides the operator with adapted active power setpoints for each wind turbine generator (WTG) in a given network topology. The aim is to maximize OWF power generation and minimize internal power losses while secure network operation is guaranteed. Using load flow analysis based on WTG power output measurements, the load on each cable section is monitored and the cables can be utilized to their individual full capacity while overload is avoided. The practicability of the approach is demonstrated by means of simulation results.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal control of offshore wind farm collector systems during outages;2023 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm);2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3