Model-based sensor fusion of multimodal cardiorespiratory signals using an unscented Kalman filter

Author:

Linschmann Onno1,Leonhardt Steffen1,Hoog Antink Christoph1

Affiliation:

1. RWTH Aachen University , Medizinische Informationstechnik , Pauwelsstr. 20 , Aachen , Germany

Abstract

Abstract Based on a model of three coupled oscillators describing the influence of respiration, namely respiratory sinus arrhythmia (RSA), and so-called Mayer waves on the heart rate, an unscented Kalman filter (UKF) is designed to perform sensor fusion of multimodal cardiorespiratory sensor signals. The aim is to implicitly use redundancy between the sensor signals to improve the estimated heart rate while utilising model knowledge. The effectiveness of the approach is shown by estimations of the heart rate on synthesised data as well as patient data from the Fantasia dataset and a Sleep laboratory which provide two, three or six sensor channels for resting individuals. It could be shown that the approach is able to fuse multimodal sensor signals on signal level to achieve more accurate estimations. For real data, errors in mean heart rate as small as 1.56 % were achieved.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference19 articles.

1. N. Adurthi, P. Singla and T. Singh. Conjugate unscented transformation: applications to estimation and control. Journal of Dynamic Systems, Measurement, and Control, 140(3), Nov. 2017.

2. C. Brüser, S. Winter and S. Leonhardt. Robust inter-beat interval estimation in cardiac vibration signals. Physiological Measurement, 34(2):123–138, Jan. 2013.

3. E. Buccelletti, G. Emanuele, E. Scaini, L. Galiuto, R. Persiani, A. Biondi, F. Basile and N. Silveri. Heart rate variability and myocardial infarction: systematic literature review and metanalysis. European Review for Medical and Pharmacological Sciences, 13:299–307, Nov. 2008.

4. P. Hamilton. Open source ECG analysis. In Computers in Cardiology, pages 101–104, Sept. 2002.

5. C. Hoog Antink, S. Leonhardt and M. Walter. A synthesizer framework for multimodal cardiorespiratory signals. Biomedical Physics & Engineering Express, 3(3):035028, Jun. 2017.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3