RaptorQ codes aided secure data delivery strategy for vehicular networks

Author:

Bulut Cebecioglu Berna1

Affiliation:

1. Kabaoglu Mahallesi, Prof. Baki Komsuoglu Bulvarı, No:515EU , Kocaeli , Turkey

Abstract

Abstract This paper deals with security issues in the presence of an eavesdropper for a vehicular scenario. The proposed secure data delivery scheme implements Fountain Codes, namely RaptorQ (RQ) codes, at the application layer (AL) to increase communication security against eavesdroppers’ attacks. For RQ coded transmission scheme, the receiver has to collect a sufficient number of coded packets to reconstruct the original source data. Secure delivery can be achieved if the legitimate user obtains enough RQ coded packets before the eavesdropper does. To satisfy this condition, it is proposed to use a road side unit (RSU) cooperation method when the eavesdropper has better channel conditions than the legitimate user to scatter the coded packets from multiple RSUs. The aim is to reduce the probability that the eavesdropper receives the sufficient number of coded packets and recover the source data before the legitimate user. An optimisation framework which jointly selects the RQ code rate at the AL and Modulation and Coding Scheme (MCS) at the physical (PHY) layer to ensure the secure data transmission by allowing the user to decode the file with a certain probability of decoding success while minimising the intercept probability at the eavesdropper is presented. To evaluate the proposed system, a realistic end-to-end system level simulator is developed. Simulation results show that the proposed scheme can provide secure and efficient data transmission over vehicular networks by significantly reducing the intercept probability at the eavesdropper.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A data distribution scheme for VANET based on fountain code;The Journal of Supercomputing;2022-05-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3