Application of a grey-box modelling approach for the online monitoring of batch production in the chemical industry

Author:

Bouaswaig Ala E. F.1,Rahimi-Adli Keivan2,Roth Matthias1,Hosseini Alireza1,Vale Hugo1,Engell Sebastian3,Birk Joachim1

Affiliation:

1. BASF SE , Carl-Bosch-Strasse 38 , Ludwigshafen am Rhein , Germany

2. INEOS Manufacturing Deutschland GmbH , Alte Straße 201 , Köln , Germany

3. Lehrstuhl für Systemdynamik und Prozessführung, Fakultät Bio- und Chemieingenieurwesen , Technische Universität Dortmund , Dortmund , Germany

Abstract

Abstract Model-based solutions for monitoring and control of chemical batch processes have been of interest in research for many decades. However, unlike in continuous processes, in which model-based tools such as Model Predictive Control (MPC) have become a standard in the industry, the reported use of models for batch processes, either for monitoring or control, is rather scarce. This limited use is attributed partly to the inherent complexity of the batch processes (e. g., dynamic, nonlinear, multipurpose) and partly to the lack of appropriate commercial tools in the past. In recent years, algorithms and commercial tools for model-based monitoring and control of batch processes have become more mature and in the era of Industry 4.0 and digitalization they are slowly but steadily gaining more interest in real-word batch applications. This contribution provides a practical example in this application field. Specifically, the use of a grey-box modeling approach, in which a multiway Projection to Latent Structure (PLS) model is combined with a first-principles model, to monitor the evolution of a batch polymerization process and predict in real-time the final batch quality is reported. The modeling approach is described, and the experimental results obtained from an industrial batch laboratory reactor are presented.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3