Ein hybrides RNN-Modell für die mittel- bis langfristige Vorhersage des Strombedarfs unter Berücksichtigung von Wettereinflüssen

Author:

Jieyang Peng1,Dongkun Wang2,Kimmig Andreas3,Langovoy Mikhail A.3,Jiahai Wang1,Ovtcharova Jivka3

Affiliation:

1. Chinesich-Deutsches Zentrum für Maschinenbau , Tongji Universität , Shanghai , PR China

2. Universität Stuttgart , Keplerstrasse 7 , Stuttgart , Germany

3. Institut für Informationsmanagement im Ingenieurwesen (IMI) , Karlsruhe Institute of Technology , Karlsruhe , Germany

Abstract

Zusammenfassung Im täglichen Stadtbetrieb sollte die Stromversorgung unterbrechungsfrei sein, was das moderne Energiemanagement vor Herausforderungen stellt. Die Prognose des Energiebedarfs kann die Strategie des Energiemanagements optimieren und die Energieeffizienz verbessern. Das traditionelle LSTM-Modell, das auf einer Codierungs-Decodierungs-Struktur basiert, codiert alle historischen Informationen als Vektor fester Länge, was zum Informationsverlust führt, wenn der vorhergesagte Wert von den Merkmalen abhängt die weit in der Vergangenheit liegen. Dies ist bei Energieprognosen aufgrund der Periodizität des Energieverbrauchs üblich. Um das oben genannte Problem zu lösen und das Potenzial der Betriebsdaten von Kraftwerken für Energievorhersagen vollständig auszuschöpfen, wird in diesem Artikel ein Energievorhersagemodell vorgeschlagen, das auf dem Aufmerksamkeitsmechanismus basiert. Ausgehend von der traditionellen Codierungs-Decodierungs-Architektur wird der räumliche und zeitliche Aufmerksamkeitsmechanismus eingeführt, um die räumlichen und zeitlichen Eigenschaften, die für den vorhergesagten Wert am relevantesten sind, adaptiv auszuwählen. Die experimentellen Ergebnisse zeigen, dass bei der Vorhersage des Strombedarfs von Shanghai für die nächsten 100 Tage, der Fehler des Hybridmodells 25,8 % niedriger ist als der des traditionellen LSTM-Modells. Darüber hinaus zeigt der Fehlertrend des Hybridmodells im Laufe der Zeit auch eine stärkere Stabilität als das herkömmliche Modell.

Funder

National Basic Research Program of China

Horizon 2020 Framework Programme

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3