3D camera-based markerless navigation system for robotic osteotomies

Author:

Übelhör Tim1ORCID,Gesenhues Jonas1,Ayoub Nassim2,Modabber Ali2,Abel Dirk1

Affiliation:

1. Institute of Automatic Control , RWTH Aachen University , Aachen , Germany

2. Department of oral and maxillofacial surgery , University Hospital RWTH Aachen , Aachen , Germany

Abstract

Abstract A markerless system for the registration of a bone’s pose is presented which reduces the setup time and the damage to the bone to a minimum. For the registration, a particle filter is implemented which is able to estimate a bone’s pose using depth images. In a phantom study, the pose of 3D-printed bones has been estimated at a rate of 90 Hz and with a precision of a few millimeters. The particle filter is stable under partial occlusions and only diverges when the bone is fully occluded. During a cadaver study, the preoperatively planned cutting edges have been projected as augmented reality (AR) templates onto the hip bones of five cadavers. By cutting manually along the AR templates, surgeons were able to extract ten transplants in the same time as with conventional osteotomy templates. Using the presented navigation system can save hours spent on the construction and production of conventional templates. In conclusion, this work represents one step towards a broader acceptance of robotic osteotomies.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3