Optimal multispectral sensor configurations through machine learning for cognitive agriculture

Author:

Becker Florian1,Backhaus Andreas2,Johrden Felix2,Flitter Merle1

Affiliation:

1. Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB , Karlsruhe , Germany

2. Fraunhofer Institute for Factory Operation and Automation IFF , Magdeburg , Germany

Abstract

Abstract Hyperspectral sensor systems play a key role in the automation of work processes in the farming industry. Non-invasive measurements of plants allow for an assessment of the vitality and health state and can also be used to classify weeds or infected parts of a plant. However, one major downside of hyperspectral cameras is that they are not very cost-effective. In this paper, we show, that for specific tasks, multispectral systems with only a fraction of the wavelength bands and costs of a hyperspectral system can lead to promising results for regression and classification tasks. We conclude that for the ongoing automation efforts in the context of cognitive agriculture reduced multispectral systems are a viable alternative.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Problem-Specific Optimized Multispectral Sensing for Improved Quantification of Plant Biochemical Constituents;2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS);2022-09-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3