On complexity reduction of the discrete-event subsystem of Flat Hybrid Automata for control design

Author:

Kleinert Tobias1,Zahn Frederik2,Hagenmeyer Veit2

Affiliation:

1. Chair of Process Control Engineering , RWTH Aachen University , Aachen , Germany

2. Institut für Automation und angewandte Informatik (IAI) , Karlsruher Institut für Technologie , Karlsruhe , Germany

Abstract

Abstract The class of hybrid systems describes most technical systems in great detail. However, the respective models and their behavior tend to be very complex. Recently, a new subclass of hybrid automata has been introduced, the Flat Hybrid Automata (FHA) that relies on the concepts of differential flatness for the continuous parts, and strongly connected automaton graphs for the discrete event part, in order to deal with the complexity from a design perspective. Therefore, we introduce in the present paper an approach to reduce the automaton graph of an FHA in a systematic way by removing edges from the adjacency matrix. The main contribution of the paper is twofold: Firstly, based on practical considerations we develop a heuristic algorithm to reduce the automaton graph. Secondly, we present possible ways to include knowledge about the system in the reduction.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Assessing the combination of differential flatness and deterministic automata for controllable hybrid systems;2022 IEEE 61st Conference on Decision and Control (CDC);2022-12-06

2. Modelling power systems as flat hybrid automata for controlled line switching;Proceedings of the Thirteenth ACM International Conference on Future Energy Systems;2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3