Aligning process quality and efficiency in agricultural soil tillage

Author:

Kazenwadel Benjamin1,Becker Simon1,Graf Marina1,Geimer Marcus1

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Institute of Mobile Machines (Mobima) , Karlsruhe , Germany

Abstract

Abstract Automation in agricultural machinery is a crucial driver of productivity and sustainability. Some automation features like automated steering and real-time data analytics are already state-of-the-art. On the other hand, a human driver performs the optimization of the working speed manually, and the automation of this is an ongoing challenge. Process quality and process efficiency are the two main targets in this optimization. Agricultural soil tillage requires achieving both. Therefore, the correlation between process quality optimization and process efficiency is fundamental, and vice versa. The approach presented in this paper shows how the two optimization targets of efficiency and process quality can be optimized and aligned together. Optical sensors determine various parameters to describe and model the process quality. The measured machine state determines the characteristics of the interaction forces between the machine and the environment. A machine learning algorithm describes the relationships in the drivetrain. The two process targets are each predicted for different working speeds and are combined in the form of a boundary target and an optimization target to identify one optimized target speed value.

Publisher

Walter de Gruyter GmbH

Subject

Electrical and Electronic Engineering,Computer Science Applications,Control and Systems Engineering

Reference22 articles.

1. O. Bosse and W.-D. Kalk, “Kenngröße zum Bewerten von Bodenbearbeitungswerkzeugen und -geräten bei experimentellen Vergleichen,” Grundlagen Landtechnik, vol. 4, no. 38, pp. 106–113, 1988.

2. T. Riegler, C. Rechberger, F. Handler, and H. Prankl, “Bildverarbeitungssystem zur Qualitätsbeurteilung von Bodenbearbeitung,” LAND.TECHNIK  2014, vol. 69, no. 3, pp. 125–131, 2014.

3. S. Steinhaus, Methodik zur Bewertung und Erfassung der Effektivität und Effizienz von landwirtschaftlichen Verfahren und Prozessen: Dissertation, ser. Forschungsberichte aus dem Institut für mobile Maschinen und Nutzfahrzeuge, Düren, Shaker Verlag, 2022.

4. P. Riegler-Nurscher, J. Karner, J. Huber, et al.., “A system for online control of a rotary harrow using soil roughness detection based on stereo vision,” in LAND.TECHNIK 2017, VDI Verlag, 2017, pp. 559–566.

5. M. Schmidt, “AI-based tillage job quality assessment for advanced machine automation in agriculture,” in LAND.TECHNIK 2022, Germany, VDI Verlag, 2022, pp. 567–572.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3