Integration of selected AI methods into a simulation tool for urban wastewater systems – towards practical application

Author:

Ogurek Michael1,Alex Jens1,Schütze Manfred1

Affiliation:

1. Department Water & Energy , Institut für Automation und Kommunikation e.V. , Denkfabrik im Wissenschaftshafen, Werner-Heisenberg-Straße 1, 39106 Magdeburg , Germany

Abstract

Abstract State-of-the-art modelling tools and dynamic simulations have become important tools for planning and operational decision making in the environmental sector, including wastewater treatment plants. Due to increasing regulatory requirements (energy savings, treatment performance, GHG footprint), the practical application of these instruments is becoming more challenging. AI methods could be a solution to support users in the application of domain-specific modelling and simulation tools. This contribution presents first steps towards the integration of the AI methods Bayesian Networks (BN) and Artificial Neural Networks (ANN) into a modelling and simulation tool for urban waste water systems, including example applications.

Funder

German Federal Ministry for Economic Affairs and Climate Action

Publisher

Walter de Gruyter GmbH

Reference24 articles.

1. P. Baumann, A. Gahr, U. Pachaly, F. Uecker, F. Obenaus, and C. Wolf, “KI-basierte Assistenzsysteme in der Abwasserwirtschaft,” KA Korrespondenz Abwasser, Abfall, vol. 70, no. 10, pp. 770–780, 2023.

2. W. P. Wagner, “Trends in expert system development – a longitudinal content analysis of over thirty years of expert system case studies,” Expert Syst. Appl., vol. 76, no. 10, pp. 85–96, 2017. https://doi.org/10.1016/j.eswa.2017.01.028.

3. A. Paszke, et al.., “PyTorch: an imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems (NeurIPS), 2019.

4. Y. Jia, et al.., “Caffe: convolutional architecture for fast feature embedding,” in Proceedings of the 22nd ACM International Conference on Multimedia, 2014, pp. 675–678.

5. Modelica Association. Modelica® – A Unified Object-Oriented Language for Systems Modeling, Language Specification, 2023. Available at: https://modelica.org.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3