Breeding triploid aspen and poplar clones for biomass production

Author:

Ulrich Kristina1,Ewald Dietrich1

Affiliation:

1. Johann Heinrich von Thünen-Institute (TI), Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Forest Genetics, Waldsieversdorf , Germany

Abstract

Abstract Enriched diploid pollen was applied for in vitro pollinations and crossbreeding in the greenhouse to produce high performance triploid aspen and aspen hybrids for cultivation in medium rotation plantations. In addition to crossings within the section Populus, intersectional crossbreeding was performed to combine benefits of intersectional hybridization with those derived from triploidisation. Both the enrichment of diploid pollen by size fractionation of naturally unreduced pollen and heat treatment of microspore mother cells resulted in a distinct increase of diploid pollen. Using this pollen, six triploid plants were obtained from in vitro pollinations and twenty from crossbreeding in the greenhouse. The triploid plants displayed a high variability in growth performance. Two clones from in vitro pollination and five from crossbreeding in the greenhouse were chosen to estimate growth characteristics. A first assessment of clone performance in an outdoor container test con - ducted over one growing season revealed two triploid clones with a same stem height and a significantly increased basal stem diameter in comparison to the fast-growing triploid reference clone “Astria”. Crossbreeding experiments also resulted in two fast-growing mixoploid clones, which have already been stable for several years. All in all, in this study, crossbreeding using enriched diploid pollen is proved to be a reliable and applicable approach for an effective breeding of triploid poplars.

Publisher

Walter de Gruyter GmbH

Subject

Genetics,Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3