Numerical Study on Thermal Choke Behaviors Driven by Various Rocket Operations in an RBCC Engine in Ramjet Mode

Author:

Shi Lei1,Gao Da1,Xing Liangliang2,Qin Fei1,He Guoqiang1

Affiliation:

1. Northwestern Polytechnical University, Xi’an, Shaanxi710072, PR China

2. Beijing Institute of Electronic System Engineering, Beijing100854, PR China

Abstract

AbstractThermal choke is commonly employed in a fixed geometry RBCC combustor to eliminate the need for physically variable exit geometry. This paper proposed detailed numerical studies based on a two-dimensional integration model to characterize thermal choke behaviors driven by various embedded rocket operations in an RBCC engine at Mach 4 in ramjet mode. The influences of different embedded rocket operations as well as the corresponding secondary fuel injection adjustment on thermal choke generation process, the related thermal throat feature, and the engine performance are analyzed. Operations of embedded rocket bring significant effects on the thermal choke behaviors: (1) the thermal throat feature becomes much more irregular influenced by the rocket plume; (2) the occupancy range in the combustor is significantly lengthened; (3) the asynchrony of the flow in different regions accelerating to sonic speed becomes much more significant; (4) as the rocket throttling ratio decreases, the thermal choke position constantly moves upstream integrally, and the heated flow in the top region that is directly affected by the rocket plume reaches sonic speed more rapidly. Finally, we can conclude that appropriate secondary fuel injection adjustment can provide a higher integration thrust for the RBCC engine with the embedded rocket operating, while the thermal choke is stably controlled, and the increased heat release and combustion pressure are well balanced by the variations of pre-combustion shocks in the inlet isolator.

Publisher

Walter de Gruyter GmbH

Subject

Aerospace Engineering

Reference60 articles.

1. Numerical investigation of cowl lip adjustments for a rocket-based combined-cycle inlet in takeoff regime;Int J Turbo Jet Engines,2016

2. Combustion oscillation study in a kerosene fueled rocket-based combined-cycle engine combustor;Acta Astronaut,2016

3. Combined rocket and airbreathing propulsion systems for space-launch applications;J Propul Power,1998

4. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode;Acta Astronat,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3