Microencapsulation Technique with Organic Additives for Biocontrol Agents

Author:

Szczech Magdalena1,Maciorowski Robert1

Affiliation:

1. Research Institute of Horticulture, Konstytucji 3 Maja 1/3 str., 96-100 Skierniewice, Poland

Abstract

Abstract The aim of these studies was to develop an effective formulation for microbial strains active in plant protection. Emulsification technique in oil was used to produce alginate microcapsules supplemented with organic additives to improve production process and stability of the preparations during storage. The release of microorganisms from the capsules in soil and their effectiveness in biocontrol of Fusarium wilt were evaluated. Three bacterial strains Burkholderia cepacia strain CAT5, Bacillus spp. strains PZ9 and SZ61, and fungus Trichoderma virens TRS106 were immobilized separately in calcium alginate supplemented with chitosan, peat powder, or skim milk. The productivity of microcapsules was enhanced by 60% when peat was added to the alginate matrix. Peat reduced also contamination of the capsules during storage, significantly enhancing their quality. By contrast, the addition of skim milk reduced quality of the microcapsules. The additives did not influence the viability of entrapped microorganisms and their release in soil. The survival of the microbial cells was mainly related to the kind of microorganism used, and the highest viability showed Bacillus sp. PZ9 and Trichoderma TRS106. Lyophilization of the microcapsules appeared to be unfavorable by reducing microbial viability in the capsules and in the soil after application. The best properties: good storage ability and sufficient microbial release in the soil, exhibited wet microcapsules amended with peat. These capsules were used to control Fusarium wilt in tomato plants. The protective effect was obtained when the microcapsule-entrapped bacteria PZ9 were used. The effectiveness of this bacterium was comparable with fungicide. Peat-amended microcapsules entrapping Bacillus PZ9 showed the best quality and may have potential for commercial use.

Publisher

Walter de Gruyter GmbH

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3