Enhancing Constructive Neural Network Performance Using Functionally Expanded Input Data

Author:

Bertini Junior João Roberto1,Nicoletti Maria do Carmo2

Affiliation:

1. Department of Computer Science, UFSCar, Rodovia Washington Luís, km 235, São Carlos-SP, Brazil

2. Department of Computer Science, UFSCar & FACCAMP, São Carlos & Campo Limpo Paulista - SP, Brazil

Abstract

Abstract Constructive learning algorithms are an efficient way to train feedforward neural networks. Some of their features, such as the automatic definition of the neural network (NN) architecture and its fast training, promote their high adaptive capacity, as well as allow for skipping the usual pre-training phase, known as model selection. However, such advantages usually come with the price of lower accuracy rates, when compared to those obtained with conventional NN learning approaches. This is, perhaps, the reason for conventional NN training algorithms being preferred over constructive NN (CoNN) algorithms. Aiming at enhancing CoNN accuracy performance and, as a result, making them a competitive choice for machine learning based applications, this paper proposes the use of functionally expanded input data. The investigation described in this paper considered six two-class CoNN algorithms, ten data domains and seven polynomial expansions. Results from experiments, followed by a comparative analysis, show that performance rates can be improved when CoNN algorithms learn from functionally expanded input data.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modelling and Simulation,Information Systems

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3