Affiliation:
1. Institute of Computer Science and Engineering, Department of Computer Science, National Chiao Tung Universityal. 1001 University Rd., Hsinchu, Taiwan, R.O.C.
2. Department of Computer Science, Institute of Biomedical Engineering, and Biomedical Electronics Translational Research Center and Biomimetic Systems Research Center in National Chiao Tung Universityal. 1001 University Rd., Hsinchu, Taiwan, R.O.C.
Abstract
Abstract
Recent studies have utilizes color, texture, and composition information of images to achieve affective image classification. However, the features related to spatial-frequency domain that were proven to be useful for traditional pattern recognition have not been tested in this field yet. Furthermore, the experiments conducted by previous studies are not internationally-comparable due to the experimental paradigm adopted. In addition, contributed by recent advances in methodology, that are, Hilbert-Huang Transform (HHT) (i.e. Empirical Mode Decomposition (EMD) and Hilbert Transform (HT)), the resolution of frequency analysis has been improved. Hence, the goal of this research is to achieve the affective image-classification task by adopting a standard experimental paradigm introduces by psychologists in order to produce international-comparable and reproducible results; and also to explore the affective hidden patterns of images in the spatial-frequency domain. To accomplish these goals, multiple human-subject experiments were conducted in laboratory. Extended Classifier Systems (XCSs) was used for model building because the XCS has been applied to a wide range of classification tasks and proved to be competitive in pattern recognition. To exploit the information in the spatial-frequency domain, the traditional EMD has been extended to a two-dimensional version. To summarize, the model built by using the XCS achieves Area Under Curve (AUC) = 0.91 and accuracy rate over 86%. The result of the XCS was compared with other traditional machine-learning algorithms (e.g., Radial-Basis Function Network (RBF Network)) that are normally used for classification tasks. Contributed by proper selection of features for model building, user-independent findings were obtained. For example, it is found that the horizontal visual stimulations contribute more to the emotion elicitation than the vertical visual stimulation. The effect of hue, saturation, and brightness; is also presented.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献