Directed Evolution – A New Metaheuristc for Optimization

Author:

Rotar Corina1,Iantovics Laszlo Barna2

Affiliation:

1. Department of Exact and Engineering Sciences, “1 Decembrie 1918” University, Unirii street, no. 15-17, 510109 Alba Iulia, Romania

2. Department of Computer Science, “Petru Maior” University, N. Iorga street, no. 1, 540088, Trgu Mure, Romania

Abstract

Abstract Recently, we have witnessed an infusion of calculating models based on models offered by nature, models with more or less fidelity to the original that have led to the development of various problem-solving computational procedures. Starting from the observation of natural processes at the macroscopic or microscopic level, various methods have been developed. Technological progress today allows the accelerated reproduction of natural phenomena in the laboratory, which is why a new niche has arisen in the landscape of nature-inspired methods. This niche is devoted to the emulation of artificial biological processes in computational problem-solving methods. This paper proposes a novel approach, which is to develop novel computational methods in the field of Natural Computing based on the semi-natural process, namely Directed Evolution. In the first step we explain Directed Evolution, defined as the artificial reproduction of the process of evolution in the laboratory in order to obtain performing biological entities. For computer scientists, this provide a strong source of inspiration in the search for efficient methods of optimization. The computational model that proposed here largely overlaps with the Directed Evolution protocol, and the results obtained in the numerical experiments confirm the viability of such techniques inspired by processes which are more artificial than natural. The paper describes a novel general algorithm, inspired by Directed Evolution, which is able to solve different optimization problems, such as single optimization, multiobjective optimization and combinatorial optimization problems.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Reference30 articles.

1. [1] Cobb, R. E., Chao, R. and Zhao, H., Directed evolution: Past, present, and future. AIChE Journal, 59, 2013, p. 1432–1440.

2. [2] Jckel, C., Kast P., and Hilvert D., Protein design by directed evolution, Annu. Rev. Biophys, 37, 2008, p. 153-173.

3. [3] Rubin-Pitel S., et al., Directed evolution tools in bio-product and bioprocess development, In Bioprocessing for Value-Added Products from Renewable Resources: New Technologies and Applications, 2006, p. 49-72.

4. [4] Moreno, P. C., Moreno A. G., and Peuela C. J., Using directed evolution techniques to solve hard combinatorial problems, Proceedings of the Computer Science & Information Technologies Conference. CSIT 2009, p. 225-229.

5. [5] Berlik, S., Directed Evolutionary Algorithms by Means of the Skew-Normal Distribution, In S. Co. 2009 Sixth Conference. Complex Data Modeling and Computationally Intensive Statistical Methods for Estimation and Prediction. Maggioli Editore, 2009, p.67.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Puzzle Learning Trail Generation Using Learning Blocks;Soft Computing Applications;2020-08-15

2. A Markov Process Approach to Redundancy in Genetic Algorithms;Artificial Intelligence and Soft Computing;2020

3. A New Hybrid Particle Swarm Optimization and Evolutionary Algorithm;Artificial Intelligence and Soft Computing;2019

4. Realizations of the Statistical Reconstruction Method Based on the Continuous-to-Continuous Data Model;Artificial Intelligence and Soft Computing;2019

5. A Continuous-Time Distributed Algorithm for Solving a Class of Decomposable Nonconvex Quadratic Programming;Journal of Artificial Intelligence and Soft Computing Research;2018-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3