Affiliation:
1. Laboratory of Cognitive Modeling and Algorithms, Department of Computer Science, Fudan University, Handan Road No.220, 200433 Shanghai, China
Abstract
Abstract
We have two motivations. Firstly, semantic gap is a tough problem puzzling almost all sub-fields of Artificial Intelligence. We think semantic gap is the conflict between the abstractness of high-level symbolic definition and the details, diversities of low-level stimulus. Secondly, in object recognition, a pre-defined prototype of object is crucial and indispensable for bi-directional perception processing. On the one hand this prototype was learned from perceptional experience, and on the other hand it should be able to guide future downward processing. Human can do this very well, so physiological mechanism is simulated here. We utilize a mechanism of classical and non-classical receptive field (nCRF) to design a hierarchical model and form a multi-layer prototype of an object. This also is a realistic definition of concept, and a representation of denoting semantic. We regard this model as the most fundamental infrastructure that can ground semantics. Here a AND-OR tree is constructed to record prototypes of a concept, in which either raw data at low-level or symbol at high-level is feasible, and explicit production rules are also available. For the sake of pixel processing, knowledge should be represented in a data form; for the sake of scene reasoning, knowledge should be represented in a symbolic form. The physiological mechanism happens to be the bridge that can join them together seamlessly. This provides a possibility for finding a solution to semantic gap problem, and prevents discontinuity in low-order structures.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献