A Machine Learning Approach for the Segmentation of Driving Maneuvers and its Application in Autonomous Parking
Author:
Notomista Gennaro1, Botsch Michael2
Affiliation:
1. Universit à degli Studi di Napoli “Federerico II” , Via Claudio 21, 80125 Napoli, Italy 2. Technische Hochschule Ingolstadt , Esplanade 10, 85049 Ingolstadt, Germany
Abstract
Abstract
A classification system for the segmentation of driving maneuvers and its validation in autonomous parking using a small-scale vehicle are presented in this work. The classifiers are designed to detect points that are crucial for the path-planning task, thus enabling the implementation of efficient autonomous parking maneuvers. The training data set is generated by simulations using appropriate vehicle-dynamics models and the resulting classifiers are validated with the small-scale autonomous vehicle. To achieve both a high classification performance and a classification system that can be implemented on a microcontroller with limited computational resources, a two-stage design process is applied. In a first step an ensemble classifier, the Random Forest (RF) algorithm, is constructed and based on the RF-kernel a General Radial Basis Function (GRBF) classifier is generated. The GRBF-classifier is integrated into the small-scale autonomous vehicle leading to excellent performance in parallel-, cross- and oblique-parking maneuvers. The work shows that segmentation using classifies and open-loop control are an efficient approach in autonomous driving for the implementation of driving maneuvers.
Publisher
Walter de Gruyter GmbH
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems
Reference22 articles.
1. [1] K. Min, J. Choi, H. Kim, and H. Myung, Design and implementation of path generation algorithm for controlling autonomous driving and parking, in 12th International Conference on Control, Automation and Systems (ICCAS), Jeju Island, Korea, 2012, pp. 956-959 2. [2] I. E. Paromtchik and C. Laugier, Autonomous parallel parking of a nonholonomic vehicle, in Proc. of the IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 1996, pp. 13-18 3. [3] J. Z. Kolter, C. Plagemann, D. T. Jackson, A. Y. Ng, and S. Thrun, A probabilistic approach to mixed open-loop and closed-loop control, with application to extreme autonomous driving, in IEEE International Conference on Robotics and Automation, Anchorage, Alaska, USA, 2010, pp. 839-845 4. [4] T. K. Lau, Learning autonomous drift parking from one demonstration, in Proc. of the IEEE International Conference on Robotics and Biomimetics, Phuket, Thailand, 2011, pp. 1456-1461 5. [5] M. R. Heinen, F. S. Osório, F. J. Heinen, and C. Kelber, Seva3d: Using artificial neural networks to autonomous vehicle parking control, in 2006 International Joint Conference on Neural Networks, Vancouver, BC, Canada, 2006, pp. 4704-4711
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|