Temporal Analysis Of Adaptive Face Recognition

Author:

Akhtar Zahid1,Rattani Ajita2,Foresti Gian Luca1

Affiliation:

1. Dept. of Mathematics and Computer Science, University of Udine, Italy.

2. Dept. of Computer Science and Electrical Engineering, University of Missouri at Kansas City, USA.

Abstract

Abstract Aging has profound effects on facial biometrics as it causes change in shape and texture. However, aging remains an under-studied problem in comparison to facial variations due to pose, illumination and expression changes. A commonly adopted solution in the state-of-the-art is the virtual template synthesis for aging and de-aging transformations involving complex 3D modelling techniques. These methods are also prone to estimation errors in the synthesis. Another viable solution is to continuously adapt the template to the temporal variation (ageing) of the query data. Though efficacy of template update procedures has been proven for expression, lightning and pose variations, the use of template update for facial aging has not received much attention so far. Therefore, this paper first analyzes the performance of existing baseline facial representations, based on local features, under ageing effect then investigates the use of template update procedures for temporal variance due to the facial age progression process. Experimental results on FGNET and MORPH aging database using commercial VeriLook face recognition engine demonstrate that continuous template updating is an effective and simple way to adapt to variations due to the aging process.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Hardware and Architecture,Modeling and Simulation,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Method for Fuzzy Nonlinear Modelling Based on Genetic Programming;Artificial Intelligence and Soft Computing;2016

2. The Method of Hardware Implementation of Fuzzy Systems on FPGA;Artificial Intelligence and Soft Computing;2016

3. Query-by-Example Image Retrieval in Microsoft SQL Server;Artificial Intelligence and Soft Computing;2016

4. The Concept of Molecular Neurons;Artificial Intelligence and Soft Computing;2016

5. Fast Dictionary Matching for Content-Based Image Retrieval;Artificial Intelligence and Soft Computing;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3