Author:
Boukas Andreas,Feinsilver Philip,Fellouris Anargyros
Abstract
AbstractWe study the structure of zero row sum matrices as an algebra and as a Lie algebra in the context of groups preserving a given projection in the algebra of matrices. We find the structure of the Lie algebra of the group that fixes a given projection. Details for the zero row sum matrices are presented. In particular, we find the Levi decomposition and give an explicit unitary equivalence with the affine Lie algebra. An orthonormal basis for zero row sum matrices appears naturally.
Subject
Statistics and Probability,Analysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献