Affiliation:
1. Dipartimento di Matematica , Università di Roma Tor Vergata , Via della Ricerca Scientifica 1, 00133 Roma , Italy
Abstract
Abstract
It is known that the Sobolev space
W
1
,
p
(
ℝ
N
)
{W^{1,p}(\mathbb{R}^{N})}
is embedded into
L
N
p
/
(
N
-
p
)
(
ℝ
N
)
{L^{Np/(N-p)}(\mathbb{R}^{N})}
if
p
<
N
{p<N}
and into
L
∞
(
ℝ
N
)
{L^{\infty}(\mathbb{R}^{N})}
if
p
>
N
{p>N}
.
There is usually a discontinuity in the proof of those two different embeddings since, for
p
>
N
{p>N}
, the estimate
∥
u
∥
∞
≤
C
∥
D
u
∥
p
N
/
p
∥
u
∥
p
1
-
N
/
p
{\lVert u\rVert_{\infty}\leq C\lVert Du\rVert_{p}^{N/p}\lVert u\rVert_{p}^{1-N%
/p}}
is commonly obtained together with an estimate of the Hölder norm.
In this note, we give a proof of the
L
∞
{L^{\infty}}
-embedding which only follows by an iteration of the Sobolev–Gagliardo–Nirenberg estimate
∥
u
∥
N
/
(
N
-
1
)
≤
C
∥
D
u
∥
1
{\lVert u\rVert_{N/(N-1)}\leq C\lVert Du\rVert_{1}}
.
This kind of proof has the advantage to be easily extended to anisotropic cases and immediately exported to the case of discrete Lebesgue and Sobolev spaces; we give sample results in case of finite differences and finite volumes schemes.
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference15 articles.
1. R. A. Adams,
Sobolev Spaces,
Pure Appl. Math. 65,
Academic Press, New York, 1975.
2. R. A. Adams,
Anisotropic Sobolev inequalities,
Časopis Pěst. Mat. 113 (1988), no. 3, 267–279.
3. M. Bessemoulin-Chatard, C. Chainais-Hillairet and F. Filbet,
On discrete functional inequalities for some finite volume schemes,
IMA J. Numer. Anal. 35 (2015), no. 3, 1125–1149.
4. F. Bouchut, R. Eymard and A. Prignet,
Finite volume schemes for the approximation via characteristics of linear convection equations with irregular data,
J. Evol. Equ. 11 (2011), no. 3, 687–724.
5. H. Brezis,
Analyse fonctionnelle: Théorie et applications,
Masson, Paris, 2005.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献