Regular Versus Singular Solutions in a Quasilinear Indefinite Problem with an Asymptotically Linear Potential

Author:

López-Gómez Julián1ORCID,Omari Pierpaolo2ORCID

Affiliation:

1. Departamento de Análisis Matemático y Matemática Aplicada and Instituto Interdisciplinar de Matemáticas , Universidad Complutense de Madrid , Plaza de Ciencias 3, 28040 Madrid , Spain

2. Dipartimento di Matematica e Geoscienze , Università degli Studi di Trieste , Via A. Valerio 12/1, 34127 Trieste , Italy

Abstract

Abstract The aim of this paper is analyzing the positive solutions of the quasilinear problem - ( u / 1 + ( u ) 2 ) = λ a ( x ) f ( u ) in  ( 0 , 1 ) , u ( 0 ) = 0 , u ( 1 ) = 0 , -\bigl{(}u^{\prime}/\sqrt{1+(u^{\prime})^{2}}\big{)}^{\prime}=\lambda a(x)f(u)% \quad\text{in }(0,1),\qquad u^{\prime}(0)=0,\quad u^{\prime}(1)=0, where λ {\lambda\in\mathbb{R}} is a parameter, a L ( 0 , 1 ) {a\in L^{\infty}(0,1)} changes sign once in ( 0 , 1 ) {(0,1)} and satisfies 0 1 a ( x ) 𝑑 x < 0 {\int_{0}^{1}a(x)\,dx<0} , and f 𝒞 1 ( ) {f\in\mathcal{C}^{1}(\mathbb{R})} is positive and increasing in ( 0 , + ) {(0,+\infty)} with a potential, F ( s ) = 0 s f ( t ) 𝑑 t {F(s)=\int_{0}^{s}f(t)\,dt} , quadratic at zero and linear at + {+\infty} . The main result of this paper establishes that this problem possesses a component of positive bounded variation solutions, 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} , bifurcating from ( λ , 0 ) {(\lambda,0)} at some λ 0 > 0 {\lambda_{0}>0} and from ( λ , ) {(\lambda,\infty)} at some λ > 0 {\lambda_{\infty}>0} . It also establishes that 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} consists of regular solutions if and only if 0 z ( x z a ( t ) d t ) - 1 / 2 d x = + or z 1 ( x z a ( t ) d t ) - 1 / 2 d x = + . \int_{0}^{z}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty\quad\text% {or}\quad\int_{z}^{1}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty. Equivalently, the small positive regular solutions of 𝒞 λ 0 + {\mathscr{C}_{\lambda_{0}}^{+}} become singular as they are sufficiently large if and only if ( x z a ( t ) d t ) - 1 / 2 L 1 ( 0 , z ) and ( x z a ( t ) d t ) - 1 / 2 L 1 ( z , 1 ) . \Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(0,z)\quad\text{and}% \quad\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(z,1). This is achieved by providing a very sharp description of the asymptotic profile, as λ λ {\lambda\to\lambda_{\infty}} , of the solutions. According to the mutual positions of λ 0 {\lambda_{0}} and λ {\lambda_{\infty}} , as well as the bifurcation direction, the occurrence of multiple solutions can also be detected.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3