Affiliation:
1. Departamento de Análisis Matemático y Matemática Aplicada and Instituto Interdisciplinar de Matemáticas , Universidad Complutense de Madrid , Plaza de Ciencias 3, 28040 Madrid , Spain
2. Dipartimento di Matematica e Geoscienze , Università degli Studi di Trieste , Via A. Valerio 12/1, 34127 Trieste , Italy
Abstract
Abstract
The aim of this paper is analyzing the positive solutions of the quasilinear
problem
-
(
u
′
/
1
+
(
u
′
)
2
)
′
=
λ
a
(
x
)
f
(
u
)
in
(
0
,
1
)
,
u
′
(
0
)
=
0
,
u
′
(
1
)
=
0
,
-\bigl{(}u^{\prime}/\sqrt{1+(u^{\prime})^{2}}\big{)}^{\prime}=\lambda a(x)f(u)%
\quad\text{in }(0,1),\qquad u^{\prime}(0)=0,\quad u^{\prime}(1)=0,
where
λ
∈
ℝ
{\lambda\in\mathbb{R}}
is a parameter,
a
∈
L
∞
(
0
,
1
)
{a\in L^{\infty}(0,1)}
changes sign once in
(
0
,
1
)
{(0,1)}
and satisfies
∫
0
1
a
(
x
)
𝑑
x
<
0
{\int_{0}^{1}a(x)\,dx<0}
, and
f
∈
𝒞
1
(
ℝ
)
{f\in\mathcal{C}^{1}(\mathbb{R})}
is positive and increasing in
(
0
,
+
∞
)
{(0,+\infty)}
with a potential,
F
(
s
)
=
∫
0
s
f
(
t
)
𝑑
t
{F(s)=\int_{0}^{s}f(t)\,dt}
, quadratic at zero and linear at
+
∞
{+\infty}
.
The main result of this paper establishes that this problem possesses a component of positive bounded variation solutions,
𝒞
λ
0
+
{\mathscr{C}_{\lambda_{0}}^{+}}
, bifurcating from
(
λ
,
0
)
{(\lambda,0)}
at some
λ
0
>
0
{\lambda_{0}>0}
and from
(
λ
,
∞
)
{(\lambda,\infty)}
at some
λ
∞
>
0
{\lambda_{\infty}>0}
.
It also establishes that
𝒞
λ
0
+
{\mathscr{C}_{\lambda_{0}}^{+}}
consists of regular solutions if and only if
∫
0
z
(
∫
x
z
a
(
t
)
d
t
)
-
1
/
2
d
x
=
+
∞
or
∫
z
1
(
∫
x
z
a
(
t
)
d
t
)
-
1
/
2
d
x
=
+
∞
.
\int_{0}^{z}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty\quad\text%
{or}\quad\int_{z}^{1}\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}dx=+\infty.
Equivalently, the small positive regular solutions of
𝒞
λ
0
+
{\mathscr{C}_{\lambda_{0}}^{+}}
become singular as they are sufficiently large if and only if
(
∫
x
z
a
(
t
)
d
t
)
-
1
/
2
∈
L
1
(
0
,
z
)
and
(
∫
x
z
a
(
t
)
d
t
)
-
1
/
2
∈
L
1
(
z
,
1
)
.
\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(0,z)\quad\text{and}%
\quad\Biggr{(}\int_{x}^{z}a(t)\,dt\Bigg{)}^{-{1/2}}\in L^{1}(z,1).
This is achieved by providing a very sharp description of the asymptotic profile, as
λ
→
λ
∞
{\lambda\to\lambda_{\infty}}
, of the solutions.
According to the mutual positions of
λ
0
{\lambda_{0}}
and
λ
∞
{\lambda_{\infty}}
, as well as the bifurcation direction, the occurrence of multiple solutions can also be detected.
Subject
General Mathematics,Statistical and Nonlinear Physics