Large Time Behavior of Solutions to the Nonlinear Heat Equation with Absorption with Highly Singular Antisymmetric Initial Values

Author:

Mouajria Hattab1,Tayachi Slim2,Weissler Fred B.3

Affiliation:

1. Université de Carthage , Institut Préparatoire aux études d’ingénieurs de Nabeul, Campus Universitaire, Merazka, 8000 Nabeul , Tunisia

2. Département de Mathématiques , Faculté des Sciences de Tunis , Université de Tunis El Manar , Laboratoire Équations aux dérivées partielles LR03ES04, 2092 Tunis , Tunisia

3. Université Sorbonne Paris Nord , CNRS UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse , France

Abstract

Abstract In this paper, we study global well-posedness and long-time asymptotic behavior of solutions to the nonlinear heat equation with absorption, u t - Δ u + | u | α u = 0 {u_{t}-\Delta u+\lvert u\rvert^{\alpha}u=0} , where u = u ( t , x ) {u=u(t,x)\in\mathbb{R}} , ( t , x ) ( 0 , ) × N {(t,x)\in(0,\infty)\times\mathbb{R}^{N}} and α > 0 {\alpha>0} . We focus particularly on highly singular initial values which are antisymmetric with respect to the variables x 1 , x 2 , , x m {x_{1},x_{2},\ldots,x_{m}} for some m { 1 , 2 , , N } {m\in\{1,2,\ldots,N\}} , such as u 0 = ( - 1 ) m 1 2 m | | - γ 𝒮 ( N ) {u_{0}=(-1)^{m}\partial_{1}\partial_{2}\cdots\partial_{m}\lvert\,{\cdot}\,% \rvert^{-\gamma}\in\mathcal{S}^{\prime}(\mathbb{R}^{N})} , 0 < γ < N {0<\gamma<N} . In fact, we show global well-posedness for initial data bounded in an appropriate sense by u 0 {u_{0}} for any α > 0 {\alpha>0} . Our approach is to study well-posedness and large time behavior on sectorial domains of the form Ω m = { x N : x 1 , , x m > 0 } {\Omega_{m}=\{x\in\mathbb{R}^{N}:x_{1},\ldots,x_{m}>0\}} , and then to extend the results by reflection to solutions on N {\mathbb{R}^{N}} which are antisymmetric. We show that the large time behavior depends on the relationship between α and 2 γ + m {\frac{2}{\gamma+m}} , and we consider all three cases, α equal to, greater than, and less than 2 γ + m {\frac{2}{\gamma+m}} . Our results include, among others, new examples of self-similar and asymptotically self-similar solutions.

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Reference13 articles.

1. T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler, Self-similar solutions of a nonlinear heat equation, J. Math. Sci. Univ. Tokyo 8 (2001), no. 3, 501–540.

2. T. Cazenave, F. Dickstein, I. Naumkin and F. B. Weissler, Perturbations of self-similar solutions, Dyn. Partial Differ. Equ. 16 (2019), no. 2, 151–183.

3. T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of a nonlinear heat equation on ℝN\mathbb{R}^{N}, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 1, 77–117.

4. T. Cazenave, F. Dickstein and F. B. Weissler, Universal solutions of the heat equation on ℝN{\mathbb{R}}^{N}, Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1105–1132.

5. T. Cazenave, F. Dickstein and F. B. Weissler, Multi-scale multi-profile global solutions of parabolic equations in ℝN\mathbb{R}^{N}, Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 449–472.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3