Large Time Behavior of Solutions to the Nonlinear Heat Equation with Absorption with Highly Singular Antisymmetric Initial Values
Author:
Mouajria Hattab1, Tayachi Slim2, Weissler Fred B.3
Affiliation:
1. Université de Carthage , Institut Préparatoire aux études d’ingénieurs de Nabeul, Campus Universitaire, Merazka, 8000 Nabeul , Tunisia 2. Département de Mathématiques , Faculté des Sciences de Tunis , Université de Tunis El Manar , Laboratoire Équations aux dérivées partielles LR03ES04, 2092 Tunis , Tunisia 3. Université Sorbonne Paris Nord , CNRS UMR 7539 LAGA, 99, Avenue Jean-Baptiste Clément, 93430 Villetaneuse , France
Abstract
Abstract
In this paper, we study global well-posedness and long-time asymptotic behavior of solutions to the nonlinear heat equation with absorption,
u
t
-
Δ
u
+
|
u
|
α
u
=
0
{u_{t}-\Delta u+\lvert u\rvert^{\alpha}u=0}
, where
u
=
u
(
t
,
x
)
∈
ℝ
{u=u(t,x)\in\mathbb{R}}
,
(
t
,
x
)
∈
(
0
,
∞
)
×
ℝ
N
{(t,x)\in(0,\infty)\times\mathbb{R}^{N}}
and
α
>
0
{\alpha>0}
.
We focus particularly on highly singular initial values which are antisymmetric with respect to the variables
x
1
,
x
2
,
…
,
x
m
{x_{1},x_{2},\ldots,x_{m}}
for some
m
∈
{
1
,
2
,
…
,
N
}
{m\in\{1,2,\ldots,N\}}
, such as
u
0
=
(
-
1
)
m
∂
1
∂
2
⋯
∂
m
|
⋅
|
-
γ
∈
𝒮
′
(
ℝ
N
)
{u_{0}=(-1)^{m}\partial_{1}\partial_{2}\cdots\partial_{m}\lvert\,{\cdot}\,%
\rvert^{-\gamma}\in\mathcal{S}^{\prime}(\mathbb{R}^{N})}
,
0
<
γ
<
N
{0<\gamma<N}
.
In fact, we show global well-posedness for initial data bounded in an appropriate sense by
u
0
{u_{0}}
for any
α
>
0
{\alpha>0}
.
Our approach is to study well-posedness and large time behavior on sectorial domains of the form
Ω
m
=
{
x
∈
ℝ
N
:
x
1
,
…
,
x
m
>
0
}
{\Omega_{m}=\{x\in\mathbb{R}^{N}:x_{1},\ldots,x_{m}>0\}}
, and then to extend the results by reflection to solutions on
ℝ
N
{\mathbb{R}^{N}}
which are antisymmetric.
We show that the large time behavior depends on the relationship between α and
2
γ
+
m
{\frac{2}{\gamma+m}}
, and we consider all three cases, α equal to, greater than, and less than
2
γ
+
m
{\frac{2}{\gamma+m}}
.
Our results include, among others, new examples of self-similar and asymptotically self-similar solutions.
Publisher
Walter de Gruyter GmbH
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference13 articles.
1. T. Cazenave, F. Dickstein, M. Escobedo and F. B. Weissler,
Self-similar solutions of a nonlinear heat equation,
J. Math. Sci. Univ. Tokyo 8 (2001), no. 3, 501–540. 2. T. Cazenave, F. Dickstein, I. Naumkin and F. B. Weissler,
Perturbations of self-similar solutions,
Dyn. Partial Differ. Equ. 16 (2019), no. 2, 151–183. 3. T. Cazenave, F. Dickstein and F. B. Weissler,
Universal solutions of a nonlinear heat equation on ℝN\mathbb{R}^{N},
Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), no. 1, 77–117. 4. T. Cazenave, F. Dickstein and F. B. Weissler,
Universal solutions of the heat equation on ℝN{\mathbb{R}}^{N},
Discrete Contin. Dyn. Syst. 9 (2003), no. 5, 1105–1132. 5. T. Cazenave, F. Dickstein and F. B. Weissler,
Multi-scale multi-profile global solutions of parabolic equations in ℝN\mathbb{R}^{N},
Discrete Contin. Dyn. Syst. Ser. S 5 (2012), no. 3, 449–472.
|
|