Affiliation:
1. Departamento de Análisis Matemático , Universidad de Granada , 18071 Granada , Spain
Abstract
Abstract
Consider the equation
div
(
φ
2
∇
σ
)
=
0
{\operatorname{div}(\varphi^{2}\nabla\sigma)=0}
in
ℝ
N
{\mathbb{R}^{N}}
, where
φ
>
0
{\varphi>0}
. Berestycki, Caffarelli and Nirenberg proved in [H. Berestycki, L. Caffarelli and L. Nirenberg,
Further qualitative properties for elliptic equations in unbounded domains,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 1997, 69–94] that if there exists
C
>
0
{C>0}
such that
∫
B
R
(
φ
σ
)
2
≤
C
R
2
\int_{B_{R}}(\varphi\sigma)^{2}\leq CR^{2}
for every
R
≥
1
{R\geq 1}
, then σ is necessarily constant. In this paper, we provide necessary and sufficient conditions on
0
<
Ψ
∈
C
(
[
1
,
∞
)
)
{0<\Psi\in C([1,\infty))}
for which this result remains true if we replace
C
R
2
{CR^{2}}
by
Ψ
(
R
)
{\Psi(R)}
in any dimension N. In the case of the convexity of Ψ for large
R
>
1
{R>1}
and
Ψ
′
>
0
{\Psi^{\prime}>0}
, this condition is equivalent to
∫
1
∞
1
Ψ
′
=
∞
.
\int_{1}^{\infty}\frac{1}{\Psi^{\prime}}=\infty.
Funder
Ministerio de Ciencia, Innovación y Universidades
Junta de Andalucía
Subject
General Mathematics,Statistical and Nonlinear Physics
Reference11 articles.
1. G. Alberti, L. Ambrosio and X. Cabré,
On a long-standing conjecture of E. De Giorgi: Symmetry in 3D for general nonlinearities and a local minimality property,
Acta Appl. Math. 65 (2001), 9–33.
2. L. Ambrosio and X. Cabré,
Entire solutions of semilinear elliptic equations in 𝐑3\mathbf{R}^{3} and a conjecture of De Giorgi,
J. Amer. Math. Soc. 13 (2000), no. 4, 725–739.
3. M. T. Barlow,
On the Liouville property for divergence form operators,
Canad. J. Math. 50 (1998), no. 3, 487–496.
4. H. Berestycki, L. Caffarelli and L. Nirenberg,
Further qualitative properties for elliptic equations in unbounded domains,
Ann. Sc. Norm. Super. Pisa Cl. Sci. (4) 25 (1997), 69–94.
5. E. De Giorgi,
Convergence problems for functionals and operators,
Proceedings of the International Meeting on Recent Methods in Nonlinear Analysis (Rome 1978),
Pitagora, Bologna (1979), 131–188.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献