Affiliation:
1. Instituto Interdisciplinar de Matemáticas (IMI) , Departamento de Análisis Matemático y Matemática Aplicada , Universidad Complutense de Madrid , Madrid 28040 , Spain
Abstract
Abstract
This paper characterizes whether or not
Σ
∞
≡
lim
λ
↑
∞
σ
[
𝒫
+
λ
m
(
x
,
t
)
,
𝔅
,
Q
T
]
\Sigma_{\infty}\equiv\lim_{\lambda\uparrow\infty}\sigma[\mathcal{P}+\lambda m(%
x,t),\mathfrak{B},Q_{T}]
is finite, where
m
⪈
0
{m\gneq 0}
is T-periodic and
σ
[
𝒫
+
λ
m
(
x
,
t
)
,
𝔅
,
Q
T
]
{\sigma[\mathcal{P}+\lambda m(x,t),\mathfrak{B},Q_{T}]}
stands for the principal eigenvalue of
the parabolic operator
𝒫
+
λ
m
(
x
,
t
)
{\mathcal{P}+\lambda m(x,t)}
in
Q
T
≡
Ω
×
[
0
,
T
]
{Q_{T}\equiv\Omega\times[0,T]}
subject
to a general boundary operator of mixed type,
𝔅
{\mathfrak{B}}
, on
∂
Ω
×
[
0
,
T
]
{\partial\Omega\times[0,T]}
. Then this result is applied to discuss the nature of the territorial refuges in periodic competitive environments.
Subject
General Mathematics,Statistical and Nonlinear Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献