Attractiveness of Constant States in Logistic-Type Keller–Segel Systems Involving Subquadratic Growth Restrictions

Author:

Winkler Michael1

Affiliation:

1. Institut für Mathematik , Universität Paderborn , Warburger Str. 100, 33098 Paderborn , Germany

Abstract

Abstract The chemotaxis-growth system ($\star$) { u t = D Δ u - χ ( u v ) + ρ u - μ u α , v t = d Δ v - κ v + λ u {}\left\{\begin{aligned} \displaystyle{}u_{t}&\displaystyle=D\Delta u-\chi% \nabla\cdot(u\nabla v)+\rho u-\mu u^{\alpha},\\ \displaystyle v_{t}&\displaystyle=d\Delta v-\kappa v+\lambda u\end{aligned}\right. is considered under homogeneous Neumann boundary conditions in smoothly bounded domains Ω n {\Omega\subset\mathbb{R}^{n}} , n 1 {n\geq 1} . For any choice of α > 1 {\alpha>1} , the literature provides a comprehensive result on global existence for widely arbitrary initial data within a suitably generalized solution concept, but the regularity properties of such solutions may be rather poor, as indicated by precedent results on the occurrence of finite-time blow-up in corresponding parabolic-elliptic simplifications. Based on the analysis of a certain eventual Lyapunov-type feature of ($\star$), the present work shows that, whenever α 2 - 2 n {\alpha\geq 2-\frac{2}{n}} , under an appropriate smallness assumption on χ, any such solution at least asymptotically exhibits relaxation by approaching the nontrivial spatially homogeneous steady state ( ( ρ μ ) 1 α - 1 , λ κ ( ρ μ ) 1 α - 1 ) {\bigl{(}\bigl{(}\frac{\rho}{\mu}\bigr{)}^{\frac{1}{\alpha-1}},\frac{\lambda}{% \kappa}\bigl{(}\frac{\rho}{\mu}\bigr{)}^{\frac{1}{\alpha-1}}\bigr{)}} in the large time limit.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Walter de Gruyter GmbH

Subject

General Mathematics,Statistical and Nonlinear Physics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3