Energy- efficient model “Inception V3 based on deep convolutional neural network” using cloud platform for detection of COVID-19 infected patients

Author:

Kumar Sachin1ORCID,Pal Saurabh1,Singh Vijendra Pratap2,Jaiswal Priya1

Affiliation:

1. Department of Computer Application , V.B.S P.U , Jaunpur , U.P , India

2. Department of Computer Science & Applications , M.G.K.V.P , Varanasi , U.P , India

Abstract

Abstract Objectives COVID-19 is frightening the health of billions of persons and speedily scattering worldwide. Medical studies have revealed that the majority of COVID-19 patients. X-ray of COVID-19 is extensively used because of their noticeably lower price than CT. This research article aims to spot the COVID-19 virus in the X-ray of the chest in less time and with better accuracy. Methods We have used the inception-v3 available on the cloud platform transfer learning model to classify COVID-19 infection. The online Inception v3 model can be reliable and efficient for COVID-19 disease recognition. In this experiment, we collected images of COVID-19-infected patients, then applied the online inception-v3 model to automatically extract features, and used a softmax classifier to classify the COVID-19 images. Finally, the experiment shows inception v3 is significant for COVID-19 image classification. Results Our results demonstrate that our proposed inception v3 model available on the cloud platform can detect 99.41% of COVID-19 cases between COVID-19 and Lung Mask diseases in 44 min only. We have also taken images of the normal chest for better outcomes. To estimate the computation power of the model, we collected 6018 COVID-19, Lung Masks, & Normal Chest images for experimentation. Our projected model offered a trustworthy COVID-19 classification by using chest X-rays. Conclusions In this research paper, the inception v3 model available on the cloud platform is used to categorize COVID-19 infection by X-ray images. The Inception v3 model available on the cloud platform is helpful to clinical experts to examine the enormous quantity of human chest X-ray images. Scientific and clinical experiments will be the subsequent objective of this paper.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Epidemiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DBM-ViT: A multiscale features fusion algorithm for health status detection in CXR / CT lungs images;Biomedical Signal Processing and Control;2024-01

2. Cloud Platform Data Disaster Recovery Model;2023 IEEE 11th Joint International Information Technology and Artificial Intelligence Conference (ITAIC);2023-12-08

3. Automatic recognition and classification of microalgae using an inception-v3 convolution neural network model;International Journal of Environmental Science and Technology;2023-09-22

4. Energy-efficient model “DenseNet201 based on deep convolutional neural network” using cloud platform for detection of COVID-19 infected patients;Epidemiologic Methods;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3